Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dependence of the mechanical properties of actin/α-actinin gels on deformation rate

Abstract

The cortical cytoplasm, including the cleavage furrow, is largely composed of a network of actin filaments that is rigid even as it is extensively deformed during cytokinesis1,2. Here we address the question of how actin-filament networks such as those in the cortex can be simultaneously rigid (solid-like) and fluid-like. Conventional explanations are that actin filaments rearrange by some combination of depolymerization and repolymerization; fragmentation and annealing of filaments; and inactivation and re-establishment of crosslinks between filaments3–5. We describe the mechanical properties of a model system consisting of actin filaments and Acanthamoeba α-actinin6–8, one of several actin crosslinking proteins found in amoeba and other cells4,9. The results suggest another molecular mechanism that may account for the paradoxical mechanical properties of the cortex. When deformed rapidly, these mixtures are 40 times more rigid than actin filaments without α-actinin, but when deformed slowly these mixtures were indistinguishable from filaments alone. These time-dependent mechanical properties can be explained by multiple, rapidly rearranging a-actinin crosslinks between the actin filaments, a mechanism proposed by Frey-Wyssling10 to account for the behaviour of cytoplasm long before the discovery of cyto-plasmic actin or α-actinin. If other actin-filament crosslinking proteins behave like Acanthamoeba α-actinin, this mechanism may explain how the cortex recoils elastically from small rapid insults but deforms extensively when minute forces are applied over long periods of time1,11,12

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hiramoto, Y. Biorheology 6, 201–234 (1970).

    Article  CAS  Google Scholar 

  2. Bray, D., Heath, J. & Moss, D. J. Cell Sci. Suppl. 22, 1–18 (1986).

    Google Scholar 

  3. Taylor, D. L. & Condeelis, J. S. Int. Rev. Cytol. 56, 57–144 (1979).

    Article  CAS  Google Scholar 

  4. Stossel, T. P. et al. A. Rev. Cell Biol. 1, 353–402 (1985).

    Article  CAS  Google Scholar 

  5. Taylor, D. L. & Fechheimer, M. Phil. Trans. R. Soc. B288, 185–197 (1983).

    Google Scholar 

  6. Pollard, T. D. J. biol. Chem. 256, 7666–7670 (1981).

    CAS  PubMed  Google Scholar 

  7. Pollard, T. D. et al. Cell Motil. (in the press).

  8. Abe, S. & Maruyama, K. J. Biochem., Tokyo 73, 1205–1210 (1973).

    Article  CAS  Google Scholar 

  9. Pollard, T. D. & Cooper, J. A. Rev. Biochem. 55, 987–1035 (1986).

    Article  CAS  Google Scholar 

  10. Frey-Wyssling, A. Submicroscopic Morphology of Protoplasm and its Derivatives. (Elsevier, New York, 1948.)

    Google Scholar 

  11. Sato, M., Wong, T. Z., Brown, D. & Allen, R. D. Cell Motil. 4, 7–23 (1984).

    Article  CAS  Google Scholar 

  12. Petersen, N. O., McConnaughey, W. B. & Elson, E. L. Proc. natn. Acad. Sci. U.S.A. 79, 5327–5331 (1982).

    Article  ADS  CAS  Google Scholar 

  13. Zaner, K. S. & Stossel, T. P. J. Cell Biol. 93, 987–991 (1982).

    Article  CAS  Google Scholar 

  14. Zaner, K. S. & Stossel, T. P. J. biol. Chem. 258, 11004–11009 (1983).

    CAS  PubMed  Google Scholar 

  15. Sato, M., Leimbach, G., Schwarz, W. H. & Pollard, T. D. J. biol. Chem. 260, 8585–8592 (1985).

    CAS  PubMed  Google Scholar 

  16. Lanni, F. & Ware, B. R. Biophys. J. 46, 97–110 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Brenner, B., Schoenberg, M., Chalovich, J. M., Greene, L. E. & Eisenberg, E. Proc. natn. Acad. Sci. U.S.A. 79, 7288–7291 (1982).

    Article  ADS  CAS  Google Scholar 

  18. Taylor, E. W. CRC Crit. Rev. Biochem. 6, 103–164 (1979).

    Article  Google Scholar 

  19. Ferry, T. D. Viscoelastic Properties of Polymers 11–118 (Wiley, New York, 1970).

    Google Scholar 

  20. Stokke, B., Mikkelsen, A. & Elgsaeter, A. Biophys. J. 49, 319–326 (1986).

    Article  CAS  Google Scholar 

  21. Schanus, E., Booth, S., Hallaway, B. & Rosenberg, A. J. biol. Chem. 260, 3724–3730 (1985).

    CAS  PubMed  Google Scholar 

  22. Oster, G. F. & Odell, G. M. Cell Motil. 4, 469–503 (1984).

    Article  CAS  Google Scholar 

  23. Nossal, R. Polymer Preprints 27, 241–242 (1986).

    CAS  Google Scholar 

  24. Bennett, J. P., Zaner, K. S. & Stossel, T. P. Biochemistry 23, 5081–5086 (1984).

    Article  CAS  Google Scholar 

  25. Hartwig, J. H. & Stossel, T. P. J. molec. Biol. 145, 563–581 (1981).

    Article  CAS  Google Scholar 

  26. Zaner, K. S. J. biol. Chem. 261 (1986).

  27. Brier, J., Fechheimer, M., Swanson, J. & Taylor, D. L. J. Cell Biol. 97, 178–185 (1983).

    Article  CAS  Google Scholar 

  28. Mabuchi, I. et al. J. Cell Biol. 100, 375–383 (1985).

    Article  CAS  Google Scholar 

  29. Fujiwara, K., Porter, M. E. & Pollard, T. D. J. Cell Biol. 79, 268–275 (1978).

    Article  CAS  Google Scholar 

  30. MacLean-Fletcher, S. & Pollard, T. D. Biochem. biophys. Res. Commun. 96, 18–27 (1980).

    Article  CAS  Google Scholar 

  31. Jockusch, B. M. & Isenberg, G. Proc. natn. Acad. Sci. U.S.A. 78, 3005–3009 (1981).

    Article  ADS  CAS  Google Scholar 

  32. MacLean-Fletcher, S. & Pollard, T. D. J. Cell Biol. 85, 414–428 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, M., Schwarz, W. & Pollard, T. Dependence of the mechanical properties of actin/α-actinin gels on deformation rate. Nature 325, 828–830 (1987). https://doi.org/10.1038/325828a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/325828a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing