Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Asynchronous replication and allelic exclusion in the immune system

Abstract

The development of mature B cells involves a series of molecular decisions which culminate in the expression of a single light-chain and heavy-chain antigen receptor on the cell surface1,2. There are two alleles for each receptor locus, so the ultimate choice of one receptor type must involve a process of allelic exclusion. One way to do this is with a feedback mechanism that downregulates rearrangement after the generation of a productive receptor molecule3, but recent work suggests that monoallelic epigenetic changes may also take place even before rearrangement4. To better understand the basis for distinguishing between alleles, we have analysed DNA replication timing. Here we show that all of the B-cell-receptor loci (μ, κ and λ) and the TCRβ locus replicate asynchronously. This pattern, which is established randomly in each cell early in development and maintained by cloning, represents an epigenetic mark for allelic exclusion, because it is almost always the early-replicating allele which is initially selected to undergo rearrangement in B cells. These results indicate that allelic exclusion in the immune system may be very similar to the process of X chromosome inactivation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antigen receptor loci replicate asynchronously.
Figure 2: Asynchronous replication during development.
Figure 3: Rearrangement is associated with early replication.
Figure 4: κ asynchronous replication is heritable.

Similar content being viewed by others

References

  1. Pernis, B., Chiappino, G., Kelus, A. S. & Gell, P. G. Cellular localization of immunoglobulins with different allotypic specificities in rabbit lymphoid tissues. J. Exp. Med. 122, 853–876 (1965).

    Article  CAS  Google Scholar 

  2. Cebra, J. J., Colberg, J. E. & Dray, S. Rabbit lymphoid cells differentiated with respect to alpha-, gamma-, and mu-heavy polypeptide chains and to allotypic markers Aa1 and Aa2. J. Exp. Med. 123, 547–558 (1966).

    Article  CAS  Google Scholar 

  3. Rajewsky, K. Clonal selection and learning in the antibody system. Nature 381, 751–758 (1996).

    Article  CAS  Google Scholar 

  4. Mostoslavsky, R. et al. κ chain monoallelic demethylation and the establishment of allelic exclusion. Genes Dev. 12, 1801–1811 (1998).

    Article  CAS  Google Scholar 

  5. Simon, I. & Cedar, H. in DNA Replication in Eukaryotic Cells (ed. DePamphilis, M. L.) 387–408 (Cold Spring Harbor Laboratory Press, New York, 1996).

    Google Scholar 

  6. Selig, S., Okumura, K., Ward, D. C. & Cedar, H. Delineation of DNA replication time zones by fluorescence in situ hybridization. EMBO J. 11, 1217–1225 (1992).

    Article  CAS  Google Scholar 

  7. Kitsberg, D. et al. Allele-specific replication timing of imprinted gene regions. Nature 364, 459–463 (1993).

    Article  CAS  Google Scholar 

  8. Chess, A., Simon, I., Cedar, H. & Axel, R. Allelic inactivation regulates olfactory receptor gene expression. Cell 78, 823–834 (1994).

    Article  CAS  Google Scholar 

  9. Takagi, N. Differentiation of X chromosomes in early female mouse embryos. Exp. Cell Res. 86, 127–135 (1974).

    Article  CAS  Google Scholar 

  10. Cedar, H. & Bergman, Y. Developmental regulation of immune system gene rearrangement. Curr. Opin. Immunol. 11, 64–80 (1999).

    Article  CAS  Google Scholar 

  11. Takeda, S. et al. Deletion of the immunoglobulin κ chain intron enhancer abolishes κ chain gene rearrangement in cis but not λ chain gene rearrangement in trans. EMBO J. 12, 2329–2336 (1993).

    Article  CAS  Google Scholar 

  12. Gorman, J. R. et al. The Igκ 3′ enhancer influences the ratio of Igκ versus Igλ B lymphocytes. Immunity 5, 241–252 (1996).

    Article  CAS  Google Scholar 

  13. Apel, T. W. et al. The ribose 5-phosphate isomerase-encoding gene is located immediately downstream from that encoding murine immunoglobulin kappa. Gene 156, 191–197 (1995).

    Article  CAS  Google Scholar 

  14. Simon, I. et al. Asynchronous replication of imprinted genes is established in the gametes and maintained during development. Nature 401, 929–932 (1999).

    Article  CAS  Google Scholar 

  15. Betz, A. G. et al. Elements regulating somatic hypermutation of an immunoglobulin kappa gene: critical role for the intron enhancer/matrix attachment region. Cell 77, 239–248 (1994).

    Article  CAS  Google Scholar 

  16. Casellas, R. et al. Contribution of receptor editing to the antibody repertoire. Science 291, 1541–1544 (2001).

    Article  CAS  Google Scholar 

  17. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nature Genet. 21, 70–71 (1999).

    Article  CAS  Google Scholar 

  18. Tenzen, T. et al. Precise switching of DNA replication timing in the GC content transition area in the human major histocompatibility complex. Mol. Cell. Biol. 17, 4043–4050 (1997).

    Article  CAS  Google Scholar 

  19. Luning-Prak, E. & Weiger, M. Light chain replacement: a new model for antibody gene rearrangement. J. Exp. Med. 182, 541–548 (1995).

    Article  Google Scholar 

  20. Jolly, C. & Neuberger, M. Somatic hypermutation of immunoglobulin kappa transgenes: Association of mutability with demethylation. Immunol. Cell. Biol. 79, 18–22 (2001).

    Article  CAS  Google Scholar 

  21. Mullins, L. J., Veres, G., Caskey, C. T. & Chapman, V. Differential methylation of the ornithine carbamoyl transferase gene on active and inactive mouse X chromosomes. Mol. Cell. Biol. 7, 3916–3922 (1987).

    Article  CAS  Google Scholar 

  22. Nadon, N., Korn, N. & DeMars, R. A-11: cell type-specific and single-active-X transcription controls of newly found gene in cultured human cells. Somat. Cell Mol. Genet. 14, 541–552 (1988).

    Article  CAS  Google Scholar 

  23. Eggan, K. et al. X-Chromosome inactivation in cloned mouse embryos. Science 290, 1578–1581 (2000).

    Article  CAS  Google Scholar 

  24. Chess, A. Expansion of the allelic exclusion principle? Science 279, 2067–2068 (1998).

    Article  CAS  Google Scholar 

  25. Hogan, B., Beddington, R., Constantini, F. & Lacey, E. Manipulating the Mouse Embryo. A Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 1994).

    Google Scholar 

  26. McCarrey, J. R., Hsu, K. C., Eddy, E. M., Klevecz, R. R. & Bolen, J. L. Isolation of viable mouse primordial germ cells by antibody-directed flow sorting. J. Exp. Zool. 242, 107–111 (1987).

    Article  CAS  Google Scholar 

  27. Bellve, A. R. et al. Spermatogenic cells of the prepuberal mouse, isolation and morphological characterization. J. Cell Biol. 74, 68–85 (1977).

    Article  CAS  Google Scholar 

  28. Rolink, A., Kudo, A., Karasuiyama, H., Kikuchi, Y. & Melchers, F. Long-term proliferating early pre-B cell lines and clones with the potential to develop to surface Ig-positive, mitogen reactive B cells in vitro and in vivo. EMBO J. 10, 327–336 (1991).

    Article  CAS  Google Scholar 

  29. Spanopoulou, E. et al. Functional immunoglobulin transgenes guide ordered B-cell differentiation in Rag-1-deficient mice. Genes Dev. 8, 1030–1042 (1994).

    Article  CAS  Google Scholar 

  30. Jat, P. S., Cepko, C. L., Mulligan, R. C. & Sharp, P. A. Recombinant retroviruses encoding simian virus 40 large T antigen and polyomavirus large and middle T antigens. Mol. Cell. Biol. 6, 1204–1217 (1986).

    Article  CAS  Google Scholar 

  31. Skok, J. A. et al. Nonequivalent nuclear location of immunoglobulin alleles in B lymphocytes. Nature Immunol. 2, 848–854 (2001).

    Article  CAS  Google Scholar 

  32. Gorman, J. R. & Alt, F. Regulation of immunoglobulin light chain isotype expression. Adv. Immunol. 69, 113–181 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Rajewsky, F. Alt and P. Soriano for kindly providing the iEκT-/-, 3′EκT-/- and ROSA26 reporter mice; B. Van Ness, F. Sablitzky, H. Schroeder, J. Roes, J. Chen, L. Jackson-Grusby, D. Ward, P. Fraser, N. Benvenisti, D. Littman, F. Alt, M. Reth, H. Zachau and I. Simon for FISH probes; B. Tsuberi for help with early embryo manipulations; Z. Werb for the antibody used to purify ICM; G. Paridis, F. Ebrahimi and J. Gribnau for advice regarding cell lines and FISH; I. Simon for discussions. This work was supported by grants from the Israel Academy of sciences (Y.B. and H.C.), German Israel Foundation (Y.B.), the NIH (A.C., Y.B. and H.C.), European Community 5th Framework Quality of Life Program (Y.B.) and the Israel Cancer Research Fund (H.C.). A.C. is a Rita Allen Foundation Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Cedar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mostoslavsky, R., Singh, N., Tenzen, T. et al. Asynchronous replication and allelic exclusion in the immune system. Nature 414, 221–225 (2001). https://doi.org/10.1038/35102606

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35102606

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing