Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spl elements protect a CpG island from de novo methylation

Abstract

ANIMAL somatic cell DNA is characterized by a bimodal pattern of methylation: tissue-specific genes are methylated in most cell types whereas housekeeping genes have 5′ CpG islands which are constitutively unmethylated1,2. Because methyl moieties derived from the gametes are erased in the morula and early blastula3, this profile must be re-established in every generation; this is apparently accomplished by a wave of non-CpG island de novo methylation that occurs at implantation4. Using transfection into embryonic stem cells and transgenic mice as a model system, we now show that Spl elements play a key role in protecting a CpG island in the adenine phosphor!bosyItransferase (APRT) gene from de novo methylation. This recognition mechanism represents a critical step in embryogenesis, as it is responsible for setting up the correct genome methylation pattern which, in turn, is involved in regulating basal gene expression in the organism5.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bird, A. P. Nature 321, 209–213 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Yisraeli, J. & Szyf, M. DNA Methylation: Biochemistry and Biological Significance (eds Razin, A., Cedar, H. & Riggs, A. D.) 353–378 (Springer, New York, 1984).

    Book  Google Scholar 

  3. Monk, M., Boubelik, M. & Lehnert, S. Development 99, 371–382 (1987).

    CAS  PubMed  Google Scholar 

  4. Kafri, T. et al. Genes Dev. 6, 705–714 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Eden, S. & Cedar, H. Curr. Opin. Genet. Dev. 4, 255–259 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Frank, D. et al. Nature 351, 239–241 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Szyf, M., Tonigawa, G. & McCarthy, P. L. J. Molec. cell. Biol. 10, 4396–4400 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shemer, R., Eisenberg, S., Breslow, J. L. & Razin, A. J. biol. Chem. 266, 23676–23681 (1991).

    CAS  PubMed  Google Scholar 

  9. Choi, Y. C. & Chae, C. B. Molec. cell. Biol. 13, 5538–5548 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kolsto, A. B. et al. Nucleic Acids Res. 14, 9667–9678 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Jahner, D. et al. Nature 298, 623–628 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Mummaneni, P., Bishop, P. L. & Turker, M. S. J. biol. Chem. 268, 552–558 (1993).

    CAS  PubMed  Google Scholar 

  13. Gardiner-Garden, M. & Frommer, M. J. molec. Biol. 196, 261–282 (1987).

    Article  CAS  PubMed  Google Scholar 

  14. Holler, M., Westin, G., Jiriany, J. & Schaffner, W. Genes Dev. 2, 1127–1135 (1988).

    Article  CAS  PubMed  Google Scholar 

  15. van der Ploeg, L. H. T. & Flavell, R. A. Cell 19, 947–958 (1980).

    Article  CAS  PubMed  Google Scholar 

  16. Cedar, H. et al. Cold Spring Harb. Symp. quant. Biol. 47, 605–609 (1983).

    Article  PubMed  Google Scholar 

  17. Briggs, M. R., Kadonaga, J. T., Bell, S. P. & Tjian, R. Science 234, 47–52 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Pfeifer, G. P., Tanguay, R. L., Steigerwald, S. D. & Riggs, A. D. Genes Dev. 4, 1277–1287 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Razin, A. & Cedar, H. Cell 77, 473–476 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Lock, L. F., Takagi, N. & Martin, G. R. Cell 48, 39–46 (1987).

    Article  CAS  PubMed  Google Scholar 

  21. Stoger, R. et al. Cell 73, 61–71 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Lichtenstein, M., Keini, G., Cedar, H. & Bergman, Y. Cell 76, 913–923 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Lowy, I. et al. Cell 22, 817–823 (1980).

    Article  CAS  PubMed  Google Scholar 

  24. Felgner, P. L. et al. Proc. natn. Acad. Sci. U.S.A. 84, 7413–7414 (1987).

    Article  ADS  CAS  Google Scholar 

  25. Jones, K. A., Kadonaga, T., Luciw, P. A. & Tjian, R. Science 232, 755–759 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Deng, W. P. & Nickoloff, J. A. Analyt. Biochem. 200, 81–88 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Hogan, B., Constantini, F. & Lacy, E. Manipulating the Mouse Embryo (Cold Spring Harbor Laboratory, New York, 1986).

    Google Scholar 

  28. Macleod, D., Charlton, J., Mullins, J. & Bird, A. P. Genes Dev. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandeis, M., Frank, D., Keshet, I. et al. Spl elements protect a CpG island from de novo methylation. Nature 371, 435–438 (1994). https://doi.org/10.1038/371435a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371435a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing