Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Replication of transcriptionally active chromatin

Abstract

IN eukaryotic cells, active genes and their regulatory sequences are organized into open chromatin conformations in which nucleosomes can be modified, disrupted or totally absent1–3. It has been proposed that these characteristic chromatin structures and their associated factors might be directly inherited by the newly synthesized daughter strands during chromosome duplication4–6. Here we show that in the yeast Saccharomyces cerevisiae, replication machinery entering upstream of a transcriptionally active ribosomal RNA gene generates two newly replicated coding regions regularly packaged into nucleosomes, indicating that the active chromatin structure cannot be directly inherited at the replication fork. Whereas the establishment of an exposed chromatin conformation at some newly replicated rRNA gene promoters can occur shortly after the passage of the replication fork, regeneration of the active chromatin structure along the coding region is always a post-replicative process involving disruption of preformed nucleosomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Felsenfeld, G. Nature 355, 219–224 (1992).

    Article  ADS  CAS  Google Scholar 

  2. Kornberg, R. D. & Lorch, Y. A. Rev. Cell Biol. 8, 563–587 (1992).

    Article  CAS  Google Scholar 

  3. Sogo, J. M., Ness., P. J., Widmer, R. M., Parish, R. W. & Koller, T. J. molec. Biol. 178, 897–928 (1984).

    Article  CAS  Google Scholar 

  4. Alberts, B., Worcel, A. & Weintruab, H. Proc. int. Symp. on the Eukaiyotic Genome (eds Bradbury, M. & Javaherian, K.) 165–191 (Academic, New York, 1977).

    Google Scholar 

  5. Brown, D. D. Cell 37, 359–365 (1984).

    Article  CAS  Google Scholar 

  6. Weintraub, H. Cell 42, 705–711 (1985).

    Article  CAS  Google Scholar 

  7. Dammann, R., Lucchini, R., Koller, T. & Sogo, J. M. Nucleic Acids Res. 10, 2331–2338 (1993).

    Article  Google Scholar 

  8. Conconi, A., Losa, R., Koller, T. & Sogo, J. M. J. molec. Biol. 178, 920–928 (1984).

    Article  CAS  Google Scholar 

  9. Conconi, A., Widmer, R. M., Koller, T. & Sogo, J. M. Cell 57, 753–761 (1989).

    Article  CAS  Google Scholar 

  10. Lucchini, R. & Sogo, J. M. Molec. cell. Biol. 12, 4288–4296 (1992).

    Article  CAS  Google Scholar 

  11. Lucchini, R. & Sogo, J. M. Molec. cell. Biol. 14, 318–326 (1994).

    Article  CAS  Google Scholar 

  12. Sogo, J. M., Stahl, H., Koller, T. & Knippers, R. J. molec. Biol. 189, 189–204 (1986).

    Article  CAS  Google Scholar 

  13. Brewer, B. J. & Fangman, W. L. Cell 55, 637–643 (1988).

    Article  CAS  Google Scholar 

  14. Linskens, M. H. K. & Huberman, J. A. Molec. cell. Biol. 8, 4927–4935 (1988).

    Article  CAS  Google Scholar 

  15. Jackson, V. Biochemistry 29, 719–731 (1990).

    Article  CAS  Google Scholar 

  16. Svaren, J. & Chalkley, R. Trends Genet. 6, 52–56 (1990).

    Article  CAS  Google Scholar 

  17. Wolffe, A. P. J. Cell Sci. 99, 201–206 (1991).

    CAS  PubMed  Google Scholar 

  18. Kulkens, T., van Heerikhuizen, H., Klootwijk, J., Oliemans, J. & Planta, R. J. Curr. Genet. 16, 351–359 (1989).

    Article  CAS  Google Scholar 

  19. Morrow, B. E., Johnson, S. P. & Warner, J. R. J. biol. Chem. 264, 9061–9068 (1989).

    CAS  PubMed  Google Scholar 

  20. Chasman, D. I. et al. Genes Dev. 4, 403–514 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucchini, R., Sogo, J. Replication of transcriptionally active chromatin. Nature 374, 276–280 (1995). https://doi.org/10.1038/374276a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374276a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing