Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Wnt signalling required for expansion of neural crest and CNS progenitors

Abstract

Interactions between cells help to elaborate pattern within the vertebrate central nervous system (CNS)1. The genes Wnt-1 and Wnt-3a, which encode members of the Wnt family of cysteine-rich secreted signals, are coexpressed at the dorsal midline of the developing neural tube, coincident with dorsal patterning2,3. Each signal is essential for embryonic development, Wnt-1 for midbrain patterning4,5 and Wnt-3a for formation of the paraxial mesoderm6, but the absence of a dorsal neural-tube phenotype in each mutant suggests that Wnt signalling may be redundant. Here we demonstrate that in the absence of both Wnt-1 and Wnt-3a there is a marked deficiency in neural crest derivatives, which originate from the dorsal neural tube7, and a pronounced reduction in dorsolateral neural precursors within the neural tube itself. These phenotypes do not seem to result from a disruption in the mechanisms responsible for establishing normal dorsoventral polarity. Rather, our results are consistent with a model in which local Wnt signalling regulates the expansion of dorsal neural precursors. Given the widespread expression of different Wnt genes in discrete areas of the mammalian neural tube3, this may represent a general model for the action of Wnt signalling in the developing CNS.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of neuronal patterning in Wnt-1/Wnt-3a compound mutants.
Figure 2: Analysis of the expression of neuronal and glial markers in Wnt-1/Wnt-3a compound mutants.
Figure 3: Analysis of the expression of neural crest cell markers in Wnt-1/Wnt-3a compound mutants.
Figure 4: Cranial skeleton of Wnt-1/Wnt-3a compound mutant embryos at 18.
Figure 5: Analysis of dorsal–ventral polarity in the hindbrain of Wnt-1/Wnt-3a compound mutants.

Similar content being viewed by others

References

  1. Tanabe, Y. & Jessell, T. M. Diversity and pattern in the developing spinal cord. Science 274, 1115–1123 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Wilkinson, D. G., Bailes, J. A. & McMahon, A. P. Expression of the proto-oncogene int-1 is restricted to specific neural cells in the developing mouse embryo. Cell 50, 79–88 (1987).

    Article  CAS  Google Scholar 

  3. Parr, B. A., Shea, M. J., Vassileva, G. & McMahon, A. P. Mouse Wnt genes exhibit discrete domains of expression in the early embryonic CNS and limb buds. Development 119, 247–261 (1993).

    CAS  PubMed  Google Scholar 

  4. McMahon, A. P. & Bradley, A. The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62, 1073–1085 (1990).

    Article  CAS  Google Scholar 

  5. Thomas, K. R. & Capecchi, M. R. Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 346, 847–850 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Takada, S. et al. Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev. 8, 174–189 (1994).

    Article  CAS  Google Scholar 

  7. Le Douarin, N. M. The Neural Crest (Cambridge Univ. Press, (1982)).

    Google Scholar 

  8. Stark, K., Vainio, S., Vassileva, G. & McMahon, A. P. Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372, 679–683 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Wong, G. T., Gavin, B. J. & McMahon, A. P. Differential transformation of mammary epithelial cells by Wnt genes. Mol. Cell. Biol. 14, 6278–6286 (1994).

    Article  CAS  Google Scholar 

  10. D'Amico-Martel, A. & Noden, D. M. Contributions of placodal and neural crest cells to avian cranial peripheral ganglia. Am. J. Anat. 166, 445–468 (1983).

    Article  CAS  Google Scholar 

  11. Lumsden, A., Sprawson, N. & Graham, A. Segmental origin and migration of neural crest cells in the hindbrain region of the chick embryo. Development 113, 1281–1291 (1991).

    CAS  PubMed  Google Scholar 

  12. Inoue, T., Chisaka, O., Matsunami, H. & Takeichi, M. Cadherin-6 expression transiently delineates specific rhombomeres, other neural tube subdivisions and neural crest subpopulations in mouse embryos. Dev. Biol. 183, 183–194 (1997).

    Article  CAS  Google Scholar 

  13. Pachnis, V., Mankoo, B. & Costantini, F. Expression of the c-ret proto-oncogene during mouse embryogenesis. Development 119, 1005–1017 (1993).

    CAS  PubMed  Google Scholar 

  14. Maden, M. et al. Domains of cellular retinoic acid-binding protein I (CRABP I) expression in the hindbrain and neural crest of the mouse embryo. Mech. Dev. 37, 13–23 (1992).

    Article  CAS  Google Scholar 

  15. Chazaud, C. et al. AP-2.2, a novel gene related to AP-2, is expressed in the forebrain, limbs and face during mouse embryogenesis. Mech. Dev. 54, 83–94 (1995).

    Article  Google Scholar 

  16. Zhang, J. et al. Neural tube, skeletal and body wall defects in mice lacking transcription factor AP-2. Nature 381, 238–241 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Schorle, H. et al. Transcription factor AP-2 essential for cranial closure and craniofacial development. Nature 381, 235–238 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Wehrle-Haller, B. & Weston, J. A. Soluble and cell-bound forms of steel factor activity play distinct roles in melanocyte precursor dispersal and survival on the lateral neural crest migration pathway. Development 121, 731–742 (1995).

    CAS  PubMed  Google Scholar 

  19. Serbedzija, G. N., Bronner-Fraser, M. & Fraser, S. E. Avital dye analysis of the timing and pathways of avian neural crest cell migration. Development 106, 809–816 (1989).

    CAS  PubMed  Google Scholar 

  20. Dickinson, M. E. et al. Dorsalization of the neural tube by non-neural ectoderm. Development 121, 2099–2106 (1995).

    CAS  PubMed  Google Scholar 

  21. Köntges, G. & Lumsden, A. Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development 122, 3229–3242 (1996).

    PubMed  Google Scholar 

  22. Couly, G., Grapin-Botton, A., Coltey, P. M. & LeDouarin, N. M. The regeneration of the cephalic neural crest, a problem revisited: the regenerating cells originate from the contralateral or from the anterior and posterior neural fold. Development 122, 3393–3407 (1996).

    CAS  PubMed  Google Scholar 

  23. Leim, K. F., Tremml, G., Roelink, H. & Jessell, T. M. Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82, 969–979 (1995).

    Article  Google Scholar 

  24. Dickinson, M. E., Krumlauf, R. & McMahon, A. P. Evidence for a mitogenic effect of Wnt-1 in the developing mammalian central nervous system. Development 120, 1453–1471 (1994).

    CAS  PubMed  Google Scholar 

  25. Serbedzija, G. N., Fraser, S. E. & Bronner-Frasser, M. Pathways of trunk neural crest cell migration in the mouse embryo as revealed by vital dye labeling. Development 108, 605–612 (1990).

    CAS  PubMed  Google Scholar 

  26. Serbedzija, G. N., Bronner-Fraser, M. & Fraser, S. E. Vital dye analysis of cranial neural crest cell migration in the mouse embryo. Development 116, 297–307 (1992).

    CAS  PubMed  Google Scholar 

  27. Mark, M. et al. Two rhombomeres are altered in Hoxa-1 mutant mice. Development 119, 319–338 (1993).

    CAS  Google Scholar 

  28. Parr, B. A. & McMahon, A. P. Dorsalizing signal Wnt-7a required for normal polarity of D-V and A-P axes of mouse limb. Nature 374, 350–353 (1995).

    Article  ADS  CAS  Google Scholar 

  29. Miller, M. W. & Nowakowski, R. S. Use of bromodeoxyuridine immunohistochemistry to examine the proliferation, migration and time of origin of cells in the central nervous system. Brain Res. 457, 44–52 (1988).

    Article  CAS  Google Scholar 

  30. Gavrieli, Y., Sherman, Y. & Ben-Sasson, S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493–501 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Takeichi for discussion and the cadherin-6 complementary DNA probe; U. Eriksson and N. Ohsumi for the CRABP-1 polyclonal antibody; T. Jessell for the Islet-1 cDNA probe; A. Dudley for the Bmp-7 cDNA probe; T. Williams for the AP-2 cDNA probe; M. Takahashi for the c-ret cDNA probe; P. Gruss for Pax-3 and Pax-6 cDNA probes; and I. Jackson for the TRP-2 cDNA probe. This work was supported by a grant-in-aid for Creative Fundamental Research from the Ministry of Education, Science, and Culture of Japan (S.T.), a grant from the Kent Waldrep National Paralysis Foundation (J.E.J.) and a grant from the NIH (A.P.M.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew P. McMahon or Shinji Takada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikeya, M., Lee, S., Johnson, J. et al. Wnt signalling required for expansion of neural crest and CNS progenitors. Nature 389, 966–970 (1997). https://doi.org/10.1038/40146

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/40146

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing