Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl

Abstract

To generate different cell types, some cells can segregate protein determinants into one of their two daughter cells during mitosis. In Drosophila neuroblasts, the Par protein complex localizes apically1,2,3,4,5 and directs localization of the cell fate determinants Prospero6,7,8 and Numb9 and the adaptor proteins Miranda10,11 and Pon12 to the basal cell cortex, to ensure their segregation into the basal daughter cell. The Par protein complex has a conserved function in establishing cell polarity13 but how it directs proteins to the opposite side is unknown. We show here that a principal function of this complex is to phosphorylate the cytoskeletal protein Lethal (2) giant larvae (Lgl; also known as L(2)gl). Phosphorylation by Drosophila atypical protein kinase C (aPKC), a member of the Par protein complex, releases Lgl from its association with membranes and the actin cytoskeleton. Genetic and biochemical experiments show that Lgl phosphorylation prevents the localization of cell fate determinants to the apical cell cortex. Lgl promotes cortical localization of Miranda14,15, and we propose that phosphorylation of Lgl by aPKC at the apical neuroblast cortex restricts Lgl activity and Miranda localization to the opposite, basal side of the cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lgl is in the Par protein complex.
Figure 2: aPKC phosphorylates Lgl on three conserved serine residues in vitro.
Figure 3: aPKC phosphorylates Lgl in vivo.
Figure 4: N-terminally truncated aPKC and non-phosphorylatable Lgl (Lgl-3A) inhibit asymmetric protein localization.

Similar content being viewed by others

References

  1. Kuchinke, U., Grawe, F. & Knust, E. Control of spindle orientation in Drosophila by the Par-3-related PDZ-domain protein Bazooka. Curr. Biol. 8, 1357–1365 (1998)

    Article  CAS  PubMed  Google Scholar 

  2. Schober, M., Schaefer, M. & Knoblich, J. A. Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature 402, 548–551 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Wodarz, A., Ramrath, A., Kuchinke, U. & Knust, E. Bazooka provides an apical cue for Inscuteable localization in Drosophila neuroblasts. Nature 402, 544–547 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Petronczki, M. & Knoblich, J. A. DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblasts in Drosophila. Nature Cell Biol. 3, 43–49 (2001)

    Article  CAS  PubMed  Google Scholar 

  5. Wodarz, A., Ramrath, A., Grimm, A. & Knust, E. Drosophila atypical protein kinase C associates with Bazooka and controls polarity of epithelia and neuroblasts. J. Cell Biol. 150, 1361–1374 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hirata, J., Nakagoshi, H., Nabeshima, Y. & Matsuzaki, F. Asymmetric segregation of the homeodomain protein Prospero during Drosophila development. Nature 377, 627–630 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Knoblich, J. A., Jan, L. Y. & Jan, Y. N. Asymmetric segregation of Numb and Prospero during cell division. Nature 377, 624–627 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Spana, E. P. & Doe, C. Q. The prospero transcription factor is asymmetrically localized to the cell cortex during neuroblast mitosis in Drosophila. Development 121, 3187–3195 (1995)

    CAS  PubMed  Google Scholar 

  9. Rhyu, M. S., Jan, L. Y. & Jan, Y. N. Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell 76, 477–491 (1994)

    Article  CAS  PubMed  Google Scholar 

  10. Ikeshima-Kataoka, H., Skeath, J. B., Nabeshima, Y., Doe, C. Q. & Matsuzaki, F. Miranda directs Prospero to a daughter cell during Drosophila asymmetric divisions. Nature 390, 625–629 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Shen, C. P., Jan, L. Y. & Jan, Y. N. Miranda is required for the asymmetric localization of Prospero during mitosis in Drosophila. Cell 90, 449–458 (1997)

    Article  CAS  PubMed  Google Scholar 

  12. Lu, B., Rothenberg, M., Jan, L. Y. & Jan, Y. N. Partner of Numb colocalizes with Numb during mitosis and directs Numb asymmetric localization in Drosophila neural and muscle progenitors. Cell 95, 225–235 (1998)

    Article  CAS  PubMed  Google Scholar 

  13. Ohno, S. Intercellular junctions and cellular polarity: the PAR-aPKC complex, a conserved core cassette playing fundamental roles in cell polarity. Curr. Opin. Cell Biol. 13, 641–648 (2001)

    Article  CAS  PubMed  Google Scholar 

  14. Ohshiro, T., Yagami, T., Zhang, C. & Matsuzaki, F. Role of cortical tumour-suppressor proteins in asymmetric division of Drosophila neuroblast. Nature 408, 593–596 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Peng, C. Y., Manning, L., Albertson, R. & Doe, C. Q. The tumour-suppressor genes lgl and dlg regulate basal protein targeting in Drosophila neuroblasts. Nature 408, 596–600 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Kalmes, A., Merdes, G., Neumann, B., Strand, D. & Mechler, B. M. A serine-kinase associated with the p127-l(2)gl tumour suppressor of Drosophila may regulate the binding of p127 to nonmuscle myosin II heavy chain and the attachment of p127 to the plasma membrane. J. Cell Sci. 109, 1359–1368 (1996)

    CAS  PubMed  Google Scholar 

  17. Strand, D., Raska, I. & Mechler, B. M. The Drosophila lethal(2)giant larvae tumour suppressor protein is a component of the cytoskeleton. J. Cell Biol. 127, 1345–1360 (1994)

    Article  CAS  PubMed  Google Scholar 

  18. Musch, A. et al. Mammalian homolog of Drosophila tumour suppressor lethal (2) giant larvae interacts with basolateral exocytic machinery in Madin-Darby canine kidney cells. Mol. Biol. Cell 13, 158–168 (2002)

    Article  CAS  PubMed  Google Scholar 

  19. Kagami, M., Toh-e, A. & Matsui, Y. Sro7p, a Saccharomyces cerevisiae counterpart of the tumour suppressor l(2)gl protein, is related to myosins in function. Genetics 149, 1717–1727 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lehman, K., Rossi, G., Adamo, J. E. & Brennwald, P. Yeast homologues of tomosyn and lethal giant larvae function in exocytosis and are associated with the plasma membrane SNARE Sec9. J. Cell Biol. 146, 125–140 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Strand, D. et al. The Drosophila lethal(2)giant larvae tumour suppressor protein forms homo-oligomers and is associated with nonmuscle myosin II heavy chain. J. Cell Biol. 127, 1361–1373 (1994)

    Article  CAS  PubMed  Google Scholar 

  22. Drier, E. A. et al. Memory enhancement and formation by atypical PKM activity in Drosophila melanogaster. Nature Neurosci. 5, 316–324 (2002)

    Article  CAS  PubMed  Google Scholar 

  23. Strand, D. et al. A human homologue of the Drosophila tumour suppressor gene l(2)gl maps to 17p11.2-12 and codes for a cytoskeletal protein that associates with nonmuscle myosin II heavy chain. Oncogene 11, 291–301 (1995)

    CAS  PubMed  Google Scholar 

  24. Schaefer, M., Shevchenko, A. & Knoblich, J. A. A protein complex containing inscuteable and the galpha-binding protein pins orients asymmetric cell divisions in Drosophila. Curr. Biol. 10, 353–362 (2000)

    Article  CAS  PubMed  Google Scholar 

  25. Lin, D. et al. A mammalian PAR-3–PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nature Cell Biol. 2, 540–547 (2000)

    Article  CAS  PubMed  Google Scholar 

  26. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993)

    CAS  PubMed  Google Scholar 

  27. Schaefer, M., Petronczki, M., Dorner, D., Forte, M. & Knoblich, J. A. Heterotrimeric G proteins direct two modes of asymmetric cell division in the Drosophila nervous system. Cell 107, 183–194 (2001)

    Article  CAS  PubMed  Google Scholar 

  28. Schulze, K. L. & Bellen, H. J. Drosophila syntaxin is required for cell viability and may function in membrane formation and stabilization. Genetics 144, 1713–1724 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kiehart, D. P. & Feghali, R. Cytoplasmic myosin from Drosophila melanogaster. J. Cell Biol. 103, 1517–1525 (1986)

    Article  CAS  PubMed  Google Scholar 

  30. Clemens, J. C. et al. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl Acad. Sci. USA 97, 6499–6503 (2000)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank B. Dickson, M. Glotzer, A. Wutz and D. Berdnik for comments on the manuscript; Y. N. Jan, D. Kiehart, F. Matsuzaki, C. Thummel, the Developmental Studies Hybridoma Bank (DSHB) and the Bloomington Drosophila Stock Center for antibodies and fly stocks; and M. Petronczki for generating mouse anti-Par-6. Work in the laboratory of J.A.K. is supported by Boehringer Ingelheim and the Wiener Wirtschafts Foerderungs Fond (WWFF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juergen A. Knoblich.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Betschinger, J., Mechtler, K. & Knoblich, J. The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl. Nature 422, 326–330 (2003). https://doi.org/10.1038/nature01486

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01486

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing