Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human erythroid cells produced ex vivo at large scale differentiate into red blood cells in vivo

Abstract

New sources of red blood cells (RBCs) would improve the transfusion capacity of blood centers. Our objective was to generate cells for transfusion by inducing a massive proliferation of hematopoietic stem and progenitor cells, followed by terminal erythroid differentiation. We describe here a procedure for amplifying hematopoietic stem cells (HSCs) from human cord blood (CB) by the sequential application of specific combinations of growth factors in a serum-free culture medium. The procedure allowed the ex vivo expansion of CD34+ progenitor and stem cells into a pure erythroid precursor population. When injected into nonobese diabetic, severe combined immunodeficient (NOD/SCID) mice, the erythroid cells were capable of proliferation and terminal differentiation into mature enucleated RBCs. The approach may eventually be useful in clinical transfusion applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Large-scale expansion of human erythroid cells.
Figure 2: Analysis of the hemoglobin (Hb) produced by the expanded erythroid cells.
Figure 3: Appearance of CFSE+ human cells in NOD/SCID mice.
Figure 4: Characterization of CFSE+/LDS human RBCs sorted on day 7.
Figure 5: HLA class I and HLA-DR analyses of cells expanded for ten days.

Similar content being viewed by others

References

  1. Eliason, J.F., Testa, N.G. & Dexter, T.M. Erythropoietin-stimulated erythropoiesis in long-term bone marrow culture. Nature 281, 382–384 (1979).

    Article  CAS  Google Scholar 

  2. Dexter, T.M., Testa, N.G., Allen, T.D., Rutherford, T. & Scolnick, E. Molecular and cell biologic aspects of erythropoiesis in long-term bone marrow cultures. Blood 58, 699–707 (1981).

    CAS  PubMed  Google Scholar 

  3. Malik, P. et al. An in vitro model of human red blood cell production from hematopoietic progenitor cells. Blood 91, 2664–2671 (1998).

    CAS  PubMed  Google Scholar 

  4. Panzenböck, B., Bartunek, P., Mapara, M.Y. & Zenke, M. Growth and differentiation of human stem cell factor/erythropoietin-dependent erythroid progenitor cells in vitro. Blood 92, 3658–3668 (1998).

    PubMed  Google Scholar 

  5. Freyssinier, J.M. et al. Purification, amplification and characterization of a population of human erythroid progenitors. Br. J. Haematol. 106, 912–922 (1999).

    Article  CAS  Google Scholar 

  6. von Lindern, M. et al. The glucocorticoid receptor cooperates with the erythopoietin receptor and c-kit to enhance and sustain proliferation of erythroid progenitors in vitro. Blood 94, 550–559 (1999).

    CAS  PubMed  Google Scholar 

  7. Chelucci, C. et al. In vitro human immunodeficiency virus-1 infection of purified hematopoietic progenitors in single-cell culture. Blood 85, 1181–1187 (1995).

    CAS  PubMed  Google Scholar 

  8. Southcott, M.J., Tanner, M.J. & Anstee, D.J. The expression of human blood group antigens during erythropoiesis in a cell culture system. Blood 93, 4425–4435 (1999).

    CAS  PubMed  Google Scholar 

  9. Metcalf, D. Hematopoietic regulators: redundancy or subtlety? Blood 82, 3515–3523 (1993).

    CAS  Google Scholar 

  10. Alexander, W.S., Roberts, A.W., Nicola, N.A., Li, R. & Metcalf, D. Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietic receptor c-Mpl. Blood 87, 2162–2170 (1996).

    CAS  PubMed  Google Scholar 

  11. Young, J.C. et al. Thrombopoietin stimulates megakaryocytopoiesis, myelopoiesis, and expansion of CD34+ progenitor cells from single CD34+Thy-1+Lin primitive progenitor cells. Blood 88, 1619–1631 (1996).

    CAS  PubMed  Google Scholar 

  12. Muta, K., Krantz, S.B., Bondurant, M.C. & Dai, C.H. Stem cell factor retards differentiation of normal human erythroid progenitor cells while stimulating proliferation. Blood 86, 572–580 (1995).

    CAS  PubMed  Google Scholar 

  13. Koury, M.J. & Bondurant, M.C. The molecular mechanism of erythropoietin action. Eur. J. Biochem. 210, 649–663 (1992).

    Article  CAS  Google Scholar 

  14. Sawada, K. et al. Purification of human blood burst-forming units–erythroid and demonstration of the evolution of erythropoietin receptors. J. Cell. Physiol. 142, 219–230 (1990).

    Article  CAS  Google Scholar 

  15. Boyer, S.H. et al. Roles of erythropoietin, insulin like growth factor I, and unidentified serum factors in promoting maturation of purified murine erythroid colony forming units. Blood 80, 2503–2512 (1992).

    CAS  PubMed  Google Scholar 

  16. Sawada, K., Krantz, S.B., Dessypris, E.N., Koury, S.T. & Sawyer, S.T. Human colony forming units erythroid do not require accessory cells, but do require direct interaction with insulin like growth factor I and/or insulin for erythroid development. J. Clin. Invest. 83, 1701–1709 (1989).

    Article  CAS  Google Scholar 

  17. Muta, K., Krantz, S.B., Bondurant, M.C. & Wickrema, A. Distinct roles of erythropoietin, insulin-like growth factor I, and stem cell factor in the development of erythroid progenitor cells. J. Clin. Invest. 94, 34–43 (1994).

    Article  CAS  Google Scholar 

  18. Majka, M. et al. The role of HIV-related chemokine receptors and chemokines in human erythropoiesis in vitro. Stem Cells 18, 128–138 (2000).

    Article  CAS  Google Scholar 

  19. Okumura, N., Tsuji, K. & Nakahata, T. Changes in cell surface antigen expressions during proliferation and differentiation of human erythroid progenitors. Blood 80, 642–650 (1992).

    CAS  PubMed  Google Scholar 

  20. Papassotiriou, I., Ducrocq, R., Préhu, C., Bardakdjian-Michau, J. & Wajcman, H. Gamma chain heterogeneity: determination of Hb F composition by perfusion chromatography. Hemoglobin 22, 469–481 (1998).

    Article  CAS  Google Scholar 

  21. Lyons, A.B. & Parish, C.R. Determination of lymphocyte division by flow cytometry. J. Immunol. Methods 171, 131–137 (1994).

    Article  CAS  Google Scholar 

  22. Bony, V., Gane, P., Bailly, P. & Cartron, J.P. Time-course expression of polypeptides carrying blood group antigens during human erythroid differentiation. Br. J. Haematol. 107, 263–274 (1999).

    Article  CAS  Google Scholar 

  23. Zanjani, E.D., McGlave, P.B., Bhakthavathsalan, A. & Stamatoyannopoulos, G. Sheep fetal haematopoietic cells produce adult haemoglobin when transplanted in the adult animal. Nature 280, 495–496 (1979).

    Article  CAS  Google Scholar 

  24. Larochelle, A. et al. Engraftment of immune-deficient mice with primitive hematopoietic cells from β-thalassemia and sickle cell anemia patients: implications for evaluating human gene therapy protocols. Hum. Mol. Genet. 4, 163–172 (1995).

    Article  CAS  Google Scholar 

  25. Samakoglu, S. et al. β-minor-globin messenger RNA accumulation in reticulocytes governs improved erythropoiesis in β-thalassemic mice after erythropoietin complementary DNA electrotransfer in muscles. Blood 97, 2213–2220 (2001).

    Article  CAS  Google Scholar 

  26. Le Van Kim, C. et al. PCR-based determination of Rhc and RhE status of fetuses at risk of Rhc and RhE haemolytic disease. Br. J. Haematol. 88, 193–195 (1994).

    Article  CAS  Google Scholar 

  27. Kobari, L. et al. In vitro and in vivo evidence for the long term multilineage (myeloid, B, NK and T) reconstitution capacity of ex vivo expanded CD34+ cord blood cells. Exp. Hematol. 28, 1470–1480 (2000).

    Article  CAS  Google Scholar 

  28. Giarratana, M.C. et al. Cell culture bags allow high extent of ex vivo expansion of LTC-IC and functional mature cells which can subsequently be frozen: interest for large scale clinical applications. Bone Marrow Transplant. 22, 707–715 (1998).

    Article  CAS  Google Scholar 

  29. Hentzen, E.R. et al. Sequential binding of CD11a/CD18 and CD11b/CD18 defines neutrophil capture and stable adhesion to intercellular adhesion molecule-1. Blood 95, 911–920 (2000).

    CAS  PubMed  Google Scholar 

  30. Lewis, D.E. et al. Rare event selection of fetal nucleated erythrocytes in maternal blood by flow cytometry. Cytometry 23, 218–227 (1996).

    Article  CAS  Google Scholar 

  31. Pic, P., Ducrocq, R. & Girot, R. Séparation des hémoglobines F, Fac, S, C, A1c et dosage de l'hémoglobine F par chromatographie liquide haute performance. Ann. Biol. Clin. 52, 129–132 (1994).

    CAS  Google Scholar 

  32. Marden, M.C., Kister, J., Bohn, B. & Poyard, C. T-state hemoglobin with four ligands bound. Biochemistry 27, 1659–1664 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank B. Drayton, M. Adam, J. Van Nifterik, A. Yapo, R. Gilot, and the cytometry team of Armand Trousseau Hospital for technical assistance, P. Gane for the gift of RhD antibodies, and Y. Brossard, P. Rouyer-Fessard, and Y. Bezard for helpful discussions. We are also grateful to M. Ardouin for the valuable gift of NOD/SCID mice. This work was supported by grants from the Association pour la Recherche en Transfusion, the Etablissement Français des Greffes, and La Ligue Contre le Cancer. T.M.A.N.-N. received a grant from the Association Combattre la Leucémie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Douay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neildez-Nguyen, T., Wajcman, H., Marden, M. et al. Human erythroid cells produced ex vivo at large scale differentiate into red blood cells in vivo. Nat Biotechnol 20, 467–472 (2002). https://doi.org/10.1038/nbt0502-467

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0502-467

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing