Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A mammalian Partner of inscuteable binds NuMA and regulates mitotic spindle organization

Abstract

Asymmetric cell division requires the orientation of mitotic spindles along the cell-polarity axis. In Drosophila neuroblasts, this involves the interaction of the proteins Inscuteable (Insc) and Partner of inscuteable (Pins). We report here that a human Pins-related protein, called LGN, is instead essential for the assembly and organization of the mitotic spindle. LGN is cytoplasmic in interphase cells, but associates with the spindle poles during mitosis. Ectopic expression of LGN disrupts spindle-pole organization and chromosome segregation. Silencing of LGN expression by RNA interference also disrupts spindle-pole organization and prevents normal chromosome segregation. We found that LGN binds the nuclear mitotic apparatus protein NuMA, which tethers spindles at the poles, and that this interaction is required for the LGN phenotype. Anti-LGN antibodies and the LGN-binding domain of NuMA both trigger microtubule aster formation in mitotic Xenopusegg extracts, and the NuMA-binding domain of LGN blocks aster assembly in egg extracts treated with taxol. Thus, we have identified a mammalian Pins homologue as a key regulator of spindle organization during mitosis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression and subcellular localization of LGN.
Figure 2: Effects of LGN overexpression on microtubule organization in mitotic MDCK cells.
Figure 3: LGN interacts directly with NuMA.
Figure 4: LGN and NuMA interact in vivo.
Figure 5: Effects of LGN on NuMA localization in MDCK cells.
Figure 6: Knockdown of endogenous LGN in HeLa cells by RNAi causes mitotic defects.
Figure 7: LGN negatively regulates aster formation in Xenopus mitotic egg extracts.

Similar content being viewed by others

References

  1. Schober, M., Schaefer, M. & Knoblich, J. A. Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature 402, 548–551 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Wodarz, A., Ramrath, A., Kuchinke, U. & Knust, E. Bazooka provides an apical cue for Inscuteable localization in Drosophila neuroblasts. Nature 402, 544–547 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Yu, F., Morin, X., Cai, Y., Yang, X. & Chia, W. Analysis of partner of inscuteable, a novel player of Drosophila asymmetric divisions, reveals two distinct steps in inscuteable apical localization. Cell 100, 399–409 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Schaefer, M., Shevchenko, A. & Knoblich, J. A. A protein complex containing Inscuteable and the Galpha-binding protein Pins orients asymmetric cell divisions in Drosophila. Curr. Biol. 10, 353–362 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Joberty, G., Petersen, C., Gao, L. & Macara, I. G. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nature Cell Biol. 2, 531–539 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Mochizuki, N., Cho, G., Wen, B. & Insel, P. A. Identification and cDNA cloning of a novel human mosaic protein, LGN, based on interaction with G alpha i2. Gene 181, 39–43 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Takesono, A. et al. Receptor-independent activators of heterotrimeric G-protein signaling pathways. J. Biol. Chem. 274, 33202–33205. (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Parmentier, M. L. et al. Rapsynoid/Partner of Inscuteable controls asymmetric division of larval neuroblasts in Drosophila. J. Neurosci. (Online) 20, RC84 (2000).

    Article  CAS  Google Scholar 

  9. Blatch, G. L. & Lassle, M. The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. BioEssays 21, 932–939 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Siderovski, D. P., Diverse-Pierluissi, M. & De Vries, L. The GoLoco motif: a Galphai/o binding motif and potential guanine-nucleotide exchange factor. Trends Biochem. Sci. 24, 340–341 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Natochin, M. et al. AGS3 inhibits GDP dissociation from Galpha subunits of the Gi family and rhodopsin-dependent activation of transducin. J. Biol. Chem. 275, 40981–40985 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Bernard, M. L., Peterson, Y. K., Chung, P., Jourdan, J. & Lanier, S. M. Selective interaction of AGS3 with G-proteins and the influence of AGS3 on the activation state of G-proteins. J. Biol. Chem. 276, 1585–1593 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Schuyler, S. C. & Pellman, D. Search, capture and signal: games microtubules and centrosomes play. J. Cell Sci. 114, 247–255 (2001).

    CAS  PubMed  Google Scholar 

  14. Gordon, M. B., Howard, L. & Compton, D. A. Chromosome movement in mitosis requires microtubule anchorage at spindle poles. J. Cell Biol. 152, 425–434 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gaglio, T. et al. Opposing motor activities are required for the organization of the mammalian mitotic spindle pole. J. Cell Biol. 135, 399–414 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Merdes, A., Heald, R., Samejima, K., Earnshaw, W. C. & Cleveland, D. W. Formation of spindle poles by dynein/dynactin-dependent transport of NuMA. J. Cell Biol. 149, 851–862 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Harborth, J., Wang, J., Gueth-Hallonet, C., Weber, K. & Osborn, M. Self assembly of NuMA: multiarm oligomers as structural units of a nuclear lattice. EMBO J. 18, 1689–1700 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nachury, M. V. et al. Importin beta is a mitotic target of the small GTPase Ran in spindle assembly. Cell 104, 95–106 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Wiese, C. et al. Role of importin-beta in coupling Ran to downstream targets in microtubule assembly. Science 291, 653–656 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Scholey, J. M., Rogers, G. C. & Sharp, D. J. Mitosis, microtubules, and the matrix. J. Cell Biol. 154, 261–266 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Compton, D. A. & Cleveland, D. W. NuMA is required for the proper completion of mitosis. J. Cell Biol. 120, 947–957 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Gaglio, T., Saredi, A. & Compton, D. A. NuMA is required for the organization of microtubules into aster-like mitotic arrays. J. Cell Biol. 131, 693–708 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Yang, C. H. & Snyder, M. The nuclear-mitotic apparatus protein is important in the establishment and maintenance of the bipolar mitotic spindle apparatus. Mol. Biol. Cell 3, 1259–1267 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang, C. H., Lambie, E. J. & Snyder, M. NuMA: an unusually long coiled-coil related protein in the mammalian nucleus. J. Cell Biol. 116, 1303–1317 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Compton, D. A., Szilak, I. & Cleveland, D. W. Primary structure of NuMA, an intranuclear protein that defines a novel pathway for segregation of proteins at mitosis. J. Cell Biol. 116, 1395–1408 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Merdes, A., Ramyar, K., Vechio, J. D. & Cleveland, D. W. A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell 87, 447–458 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Gueth-Hallonet, C., Weber, K. & Osborn, M. NuMA: a bipartite nuclear location signal and other functional properties of the tail domain. Exp. Cell Res. 225, 207–218 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Elbashir, S. M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188–200 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. De Vries, L. et al. Activator of G protein signaling 3 is a guanine dissociation inhibitor for Galpha i subunits. Proc. Natl Acad. Sci. USA 97, 14364–14369 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Miller, K. G. & Rand, J. B. A role for RIC-8 (Synembryn) and GOA-1 (G(o)alpha) in regulating a subset of centrosome movements during early embryogenesis in Caenorhabditis elegans. Genetics 156, 1649–1660 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gotta, M. & Ahringer, J. Distinct roles for Gα and Gβγ in regulating spindle position and orientation in Caenorhabditis elegans embryos. Nature Cell Biol. 3, 297–300 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Joberty, G., Perlungher, R. R. & Macara, I. G. The Borgs, a new family of Cdc42 and TC10 GTPase-interacting proteins. Mol. Cell. Biol. 19, 6585–6597 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jou, T. S. & Nelson, W. J. Effects of regulated expression of mutant RhoA and Rac1 small GTPases on the development of epithelial (MDCK) cell polarity. J. Cell Biol. 142, 85–100 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barth, A. I., Pollack, A. L., Altschuler, Y., Mostov, K. E. & Nelson, W. J. NH2-terminal deletion of beta-catenin results in stable colocalization of mutant beta-catenin with adenomatous polyposis coli protein and altered MDCK cell adhesion. J. Cell Biol. 136, 693–706 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Murray, A. W. Cell cycle extracts. Methods Cell Biol. 36, 581–605 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Stukenberg, P. T. et al. Systematic identification of mitotic phosphoproteins. Curr. Biol. 7, 338–348 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Desai, A., Murray, A., Mitchison, T. J. & Walczak, C. E. The use of Xenopus egg extracts to study mitotic spindle assembly and function in vitro. Methods Cell Biol. 61, 385–412 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Post (University of Kentucky) for the human LGN cDNA, J. Casanova (University of Virginia) for the MDCK T23 cell line, Duane Compton (Dartmouth Medical School) for anti-NuMA antibodies and NuMA cDNA, and members of the Macara group for reagents and helpful discussions. We also thank T. Tuschl for information on designing and using siRNA duplexes. This work was supported by grant CA40042 from the NIH, DHHS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quansheng Du.

Supplementary information

Supplementary Figures

Figure S1 Effects of LGN overexpression on microtubule organization in mitotic HeLa cells. (PDF 397 kb)

Figure S2 Ectopically expressed Myc–LGN-N(1′340) co-localizes with NuMA in interphase cell nuclei and disrupts the normal distribution of NuMA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, Q., Stukenberg, P. & Macara, I. A mammalian Partner of inscuteable binds NuMA and regulates mitotic spindle organization. Nat Cell Biol 3, 1069–1075 (2001). https://doi.org/10.1038/ncb1201-1069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1201-1069

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing