Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Population genomics of post-vaccine changes in pneumococcal epidemiology

Abstract

Whole-genome sequencing of 616 asymptomatically carried Streptococcus pneumoniae isolates was used to study the impact of the 7-valent pneumococcal conjugate vaccine. Comparison of closely related isolates showed the role of transformation in facilitating capsule switching to non-vaccine serotypes and the emergence of drug resistance. However, such recombination was found to occur at significantly different rates across the species, and the evolution of the population was primarily driven by changes in the frequency of distinct genotypes extant before the introduction of the vaccine. These alterations resulted in little overall effect on accessory genome composition at the population level, contrasting with the decrease in pneumococcal disease rates after the vaccine's introduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the pneumococcal population.
Figure 2: Dynamics of the carried pneumococcal population.
Figure 3: Serotype dynamics of SC9.
Figure 4: Alteration in COG frequency between 2001 and 2007.
Figure 5: Distribution of antibiotic resistance genes.
Figure 6: Changes in β-lactam resistance.
Figure 7: Geographic structure within the population.
Figure 8: Effect of host age on pneumococcal genotype.

Similar content being viewed by others

Accession codes

Primary accessions

European Nucleotide Archive

References

  1. Weinberger, D.M. et al. Pneumococcal capsular polysaccharide structure predicts serotype prevalence. PLoS Pathog. 5, e1000476 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Whitney, C.G. et al. Decline in invasive pneumococcal disease after the introduction of protein-polysaccharide conjugate vaccine. N. Engl. J. Med. 348, 1737–1746 (2003).

    Article  PubMed  Google Scholar 

  3. Steenhoff, A.P., Shah, S.S., Ratner, A.J., Patil, S.M. & McGowan, K.L. Emergence of vaccine-related pneumococcal serotypes as a cause of bacteremia. Clin. Infect. Dis. 42, 907–914 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Hicks, L.A. et al. Incidence of pneumococcal disease due to non-pneumococcal conjugate vaccine (PCV7) serotypes in the United States during the era of widespread PCV7 vaccination, 1998–2004. J. Infect. Dis. 196, 1346–1354 (2007).

    Article  PubMed  Google Scholar 

  5. Pai, R. et al. Postvaccine genetic structure of Streptococcus pneumoniae serotype 19A from children in the United States. J. Infect. Dis. 192, 1988–1995 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Pelton, S.I. et al. Emergence of 19A as virulent and multidrug resistant Pneumococcus in Massachusetts following universal immunization of infants with pneumococcal conjugate vaccine. Pediatr. Infect. Dis. J. 26, 468–472 (2007).

    Article  PubMed  Google Scholar 

  7. Finkelstein, J.A. et al. Antibiotic-resistant Streptococcus pneumoniae in the heptavalent pneumococcal conjugate vaccine era: predictors of carriage in a multicommunity sample. Pediatrics 112, 862–869 (2003).

    Article  PubMed  Google Scholar 

  8. Huang, S.S. et al. Post-PCV7 changes in colonizing pneumococcal serotypes in 16 Massachusetts communities, 2001 and 2004. Pediatrics 116, e408–e413 (2005).

    Article  PubMed  Google Scholar 

  9. Huang, S.S. et al. Continued impact of pneumococcal conjugate vaccine on carriage in young children. Pediatrics 124, e1–e11 (2009).

    Article  PubMed  Google Scholar 

  10. Hsu, K., Pelton, S., Karumuri, S., Heisey-Grove, D. & Klein, J. Population-based surveillance for childhood invasive pneumococcal disease in the era of conjugate vaccine. Pediatr. Infect. Dis. J. 24, 17–23 (2005).

    Article  PubMed  Google Scholar 

  11. Yildirim, I. et al. Serotype specific invasive capacity and persistent reduction in invasive pneumococcal disease. Vaccine 29, 283–288 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yildirim, I., Stevenson, A., Hsu, K.K. & Pelton, S.I. Evolving picture of invasive pneumococcal disease in Massachusetts children: a comparison of disease in 2007–2009 with earlier periods. Pediatr. Infect. Dis. J. 31, 1018–1021 (2012).

    Google Scholar 

  13. Hanage, W.P. et al. Clonal replacement among 19A Streptococcus pneumoniae in Massachusetts, prior to 13 valent conjugate vaccination. Vaccine 29, 8877–8881 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hanage, W.P. et al. Diversity and antibiotic resistance among nonvaccine serotypes of Streptococcus pneumoniae carriage isolates in the post-heptavalent conjugate vaccine era. J. Infect. Dis. 195, 347–352 (2007).

    Article  PubMed  Google Scholar 

  15. McGee, L. et al. Nomenclature of major antimicrobial-resistant clones of Streptococcus pneumoniae defined by the pneumococcal molecular epidemiology network. J. Clin. Microbiol. 39, 2565–2571 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Atwood, K.C., Schneider, L.K. & Ryan, F.J. Periodic selection in Escherichia coli. Proc. Natl. Acad. Sci. USA 37, 146–155 (1951).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moore, M.R. et al. Population snapshot of emergent Streptococcus pneumoniae serotype 19A in the United States, 2005. J. Infect. Dis. 197, 1016–1027 (2008).

    Article  PubMed  Google Scholar 

  18. Wyres, K.L. et al. Pneumococcal capsular switching: a historical perspective. J. Infect. Dis. 207, 439–449 (2013).

    Article  PubMed  Google Scholar 

  19. Donati, C. et al. Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species. Genome Biol. 11, R107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hanage, W.P. et al. Evidence that pneumococcal serotype replacement in Massachusetts following conjugate vaccination is now complete. Epidemics 2, 80–84 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hanage, W.P. et al. Carried pneumococci in Massachusetts children: the contribution of clonal expansion and serotype switching. Pediatr. Infect. Dis. J. 30, 302–308 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hanage, W.P., Kaijalainen, T., Saukkoriipi, A., Rickcord, J.L. & Spratt, B.G. A successful, diverse disease-associated lineage of nontypeable pneumococci that has lost the capsular biosynthesis locus. J. Clin. Microbiol. 44, 743–749 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Croucher, N.J. et al. Rapid pneumococcal evolution in response to clinical interventions. Science 331, 430–434 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Park, I.H. et al. Differential effects of pneumococcal vaccines against serotypes 6A and 6C. J. Infect. Dis. 198, 1818–1822 (2008).

    Article  PubMed  Google Scholar 

  25. Bentley, S.D. et al. Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. PLoS Genet. 2, e31 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Gherardi, G., Whitney, C.G., Facklam, R.R. & Beall, B. Major related sets of antibiotic-resistant Pneumococci in the United States as determined by pulsed-field gel electrophoresis and pbp1a-pbp2b-pbp2x-dhf restriction profiles. J. Infect. Dis. 181, 216–229 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Whitney, C.G. et al. Increasing prevalence of multidrug-resistant Streptococcus pneumoniae in the United States. N. Engl. J. Med. 343, 1917–1924 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Greene, S.K. et al. Trends in antibiotic use in Massachusetts children, 2000–2009. Pediatrics 130, 15–22 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Franke, A.E. & Clewell, D.B. Evidence for conjugal transfer of a Streptococcus faecalis transposon (Tn916) from a chromosomal site in the absence of plasmid DNA. Cold Spring Harb. Symp. Quant. Biol. 45, 77–80 (1981).

    Article  CAS  PubMed  Google Scholar 

  30. Shaw, J.H. & Clewell, D.B. Complete nucleotide sequence of macrolide-lincosamide-streptogramin B-resistance transposon Tn917 in Streptococcus faecalis. J. Bacteriol. 164, 782–796 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Del Grosso, M., Camilli, R., Iannelli, F., Pozzi, G. & Pantosti, A. The mef(E)-carrying genetic element (mega) of Streptococcus pneumoniae: insertion sites and association with other genetic elements. Antimicrob. Agents Chemother. 50, 3361–3366 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hakenbeck, R., Tarpay, M. & Tomasz, A. Multiple changes of penicillin-binding proteins in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Antimicrob. Agents Chemother. 17, 364–371 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cavalieri, S. Manual of Antimicrobial Susceptibility Testing (American Society for Microbiology, Washington, D.C., 2005).

  34. Barocchi, M.A. et al. A pneumococcal pilus influences virulence and host inflammatory responses. Proc. Natl. Acad. Sci. USA 103, 2857–2862 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Regev-Yochay, G. et al. Re-emergence of the type 1 pilus among Streptococcus pneumoniae isolates in Massachusetts, USA. Vaccine 28, 4842–4846 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Paterson, G.K., Nieminen, L., Jefferies, J.M. & Mitchell, T.J. PclA, a pneumococcal collagen-like protein with selected strain distribution, contributes to adherence and invasion of host cells. FEMS Microbiol. Lett. 285, 170–176 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Hyde, T.B. et al. Macrolide resistance among invasive Streptococcus pneumoniae isolates. J. Am. Med. Assoc. 286, 1857–1862 (2001).

    Article  CAS  Google Scholar 

  38. Kyaw, M.H. et al. Effect of introduction of the pneumococcal conjugate vaccine on drug-resistant Streptococcus pneumoniae. N. Engl. J. Med. 354, 1455–1463 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Zerbino, D.R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Delcher, A.L., Bratke, K.A., Powers, E.C. & Salzberg, S.L. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23, 673–679 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Croucher, N.J. et al. Role of conjugative elements in the evolution of the multidrug-resistant pandemic clone Streptococcus pneumoniaeSpain23F ST81. J. Bacteriol. 191, 1480–1489 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Kent, W.J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kristensen, D.M. et al. A low-polynomial algorithm for assembling clusters of orthologous groups from intergenomic symmetric best matches. Bioinformatics 26, 1481–1487 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tatusov, R.L., Galperin, M.Y., Natale, D.A. & Koonin, E.V. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Marttinen, P. et al. Detection of recombination events in bacterial genomes from large population samples. Nucleic Acids Res. 40, e6 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Stamatakis, A., Ludwig, T. & Meier, H. RAxML-III: a fast program for maximum likelihood–based inference of large phylogenetic trees. Bioinformatics 21, 456–463 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Tang, J., Hanage, W.P., Fraser, C. & Corander, J. Identifying currents in the gene pool for bacterial populations using an integrative approach. PLoS Comput. Biol. 5, e1000455 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Simpson, J.T. & Durbin, R. Efficient construction of an assembly string graph using the FM-index. Bioinformatics 26, i367–i373 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Argueso, J.L. et al. Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res. 19, 2258–2270 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Boetzer, M., Henkel, C.V., Jansen, H.J., Butler, D. & Pirovano, W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27, 578–579 (2011).

    CAS  PubMed  Google Scholar 

  53. Carver, T. et al. Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics 24, 2672–2676 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Harris, S.R. et al. Evolution of MRSA during hospital transmission and intercontinental spread. Science 327, 469–474 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Croucher, N.J., Harris, S.R., Barquist, L., Parkhill, J. & Bentley, S.D. A high-resolution view of genome-wide pneumococcal transformation. PLoS Pathog. 8, e1002745 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Drummond, A.J., Suchard, M.A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Drummond, A.J., Ho, S.Y., Phillips, M.J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Drummond, A.J., Rambaut, A., Shapiro, B. & Pybus, O.G. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 22, 1185–1192 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Stajich, J.E. et al. The Bioperl toolkit: Perl modules for the life sciences. Genome Res. 12, 1611–1618 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. R Core Development Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2011).

Download references

Acknowledgements

N.J.C. is funded by an AX A postdoctoral fellow award. Research reported in this publication was supported by the National Institute of Allergy and Infectious Diseases of the US National Institutes of Health (NIH) under award R01AI066304 and by Wellcome Trust grant 098051. We acknowledge the support of the Sanger Institute core sequencing and informatics teams and productive discussions at PERMAFROST workshops. The content is solely the responsibility of the authors and does not necessarily represent the official views of the US NIH.

Author information

Authors and Affiliations

Authors

Contributions

M.L. and W.P.H. conceived the project. M.L., W.P.H., S.D.B., J.P. and J.A.F. supervised the project. N.J.C. and P.K.M. analyzed the data. S.I.P. and G.M.L. helped with interpretation of the data. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to William P Hanage.

Ethics declarations

Competing interests

S.I.P. has investigator-initiated grants from Merck and Pfizer and has consulted for GlaxoSmithKline, Merck, Pfizer and Novartis. W.P.H. has consulted for GlaxoSmithKline. M.L. has consulted for Pfizer and Novartis.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–29, Supplementary Table 2 (PDF 3703 kb)

Supplementary Table 1

Epidemiological data associated with isolates and accession codes associated with data deposited in the European Nucleotide Archive (XLSX 130 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Croucher, N., Finkelstein, J., Pelton, S. et al. Population genomics of post-vaccine changes in pneumococcal epidemiology. Nat Genet 45, 656–663 (2013). https://doi.org/10.1038/ng.2625

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2625

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology