Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of a promyelocytic leukemia–tumor protein 53 axis underlies acute promyelocytic leukemia cure

Abstract

Acute promyelocytic leukemia (APL) is driven by the promyelocytic leukemia (PML)–retinoic acid receptor-α (PML-RARA) fusion protein, which interferes with nuclear receptor signaling and PML nuclear body (NB) assembly. APL is the only malignancy definitively cured by targeted therapies: retinoic acid (RA) and/or arsenic trioxide, which both trigger PML-RARA degradation through nonoverlapping pathways. Yet, the cellular and molecular determinants of treatment efficacy remain disputed. We demonstrate that a functional Pml–transformation-related protein 53 (Trp53) axis is required to eradicate leukemia-initiating cells in a mouse model of APL. Upon RA-induced PML-RARA degradation, normal Pml elicits NB reformation and induces a Trp53 response exhibiting features of senescence but not apoptosis, ultimately abrogating APL-initiating activity. Apart from triggering PML-RARA degradation, arsenic trioxide also targets normal PML to enhance NB reformation, which may explain its clinical potency, alone or with RA. This Pml-Trp53 checkpoint initiated by therapy-triggered NB restoration is specific for PML-RARA–driven APL, but not the RA-resistant promyelocytic leukemia zinc finger (PLZF)-RARA variant. Yet, as NB biogenesis is druggable, it could be therapeutically exploited in non-APL malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dose-response analysis of the effect of RA on PML-RARA and PLZF-RARA APL mice demonstrating uncoupling of blast differentiation and survival benefit.
Figure 2: RA-induced senescence mirrors the loss of APL-initiating cell self-renewal.
Figure 3: A key role for Trp53 activation in RA-induced loss of APL-initiating cell self-renewal in vivo.
Figure 4: Loss of Pml impedes RA-triggered APL clearance.
Figure 5: Identification of a Pml-dependent Trp53 signature.
Figure 6: Role of Pml in the efficacy of the RA-arsenic combination.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. de Thé, H. & Chen, Z. Acute promyelocytic leukaemia: novel insights into the mechanisms of cure. Nat. Rev. Cancer 10, 775–783 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Licht, J.D. Reconstructing a disease: what essential features of the retinoic acid receptor fusion oncoproteins generate acute promyelocytic leukemia? Cancer Cell 9, 73–74 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Lallemand-Breitenbach, V. & de The, H. PML nuclear bodies. Cold Spring Harb. Perspect. Biol. 2, a000661 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ito, K. et al. PML targeting eradicates quiescent leukaemia-initiating cells. Nature 453, 1072–1078 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Welch, J.S. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 150, 264–278 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hu, J. et al. Long-term efficacy and safety of all-trans retinoic acid/arsenic trioxide-based therapy in newly diagnosed acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA 106, 3342–3347 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lo-Coco, F. et al. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N. Engl. J. Med. 369, 111–121 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Sanz, M.A. et al. Management of acute promyelocytic leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 113, 1875–1891 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Zhu, J., Chen, Z., Lallemand-Breitenbach, V. & de Thé, H. How acute promyelocytic leukemia revived arsenic. Nat. Rev. Cancer 2, 705–713 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Zhu, J. et al. Arsenic-induced PML targeting onto nuclear bodies: implications for the treatment of acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA 94, 3978–3983 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jeanne, M. et al. PML-RARA oxidation and arsenic binding initiate the antileukemia response of As2O3 . Cancer Cell 18, 88–98 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, X.W. et al. Arsenic trioxide controls the fate of the PML-RARα oncoprotein by directly binding PML. Science 328, 240–243 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Lallemand-Breitenbach, V. et al. Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 11S proteasome recruitment, and As2O3-induced PML or PML-retinoic acid receptor α degradation. J. Exp. Med. 193, 1361–1371 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mathews, V. et al. Single-agent arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: long-term follow-up data. J. Clin. Oncol. 28, 3866–3871 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Ghavamzadeh, A. et al. Phase II study of single-agent arsenic trioxide for the front-line therapy of acute promyelocytic leukemia. J. Clin. Oncol. 29, 2753–2757 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Nasr, R. et al. Eradication of acute promyelocytic leukemia-initiating cells through PML-RARA degradation. Nat. Med. 14, 1333–1342 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Kogan, S.C. Curing APL: differentiation or destruction? Cancer Cell 15, 7–8 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Ablain, J. et al. Uncoupling RARA transcriptional activation and degradation clarifies the bases for APL response to therapies. J. Exp. Med. 210, 647–653 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lallemand-Breitenbach, V. et al. Retinoic acid and arsenic synergize to eradicate leukemic cells in a mouse model of acute promyelocytic leukemia. J. Exp. Med. 189, 1043–1052 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shen, Z.X. et al. All-trans retinoic acid/As2O3 combination yields a high quality remission and survival in newly diagnosed acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA 101, 5328–5335 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Estey, E. et al. Use of all-trans retinoic acid plus arsenic trioxide as an alternative to chemotherapy in untreated acute promyelocytic leukemia. Blood 107, 3469–3473 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Rego, E.M., He, L.Z., Warrell, R.P. Jr., Wang, Z.G. & Pandolfi, P.P. Retinoic acid (RA) and As2O3 treatment in transgenic models of acute promyelocytic leukemia (APL) unravel the distinct nature of the leukemogenic process induced by the PML-RARα and PLZF-RARα oncoproteins. Proc. Natl. Acad. Sci. USA 97, 10173–10178 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Koken, M.H.M. et al. Retinoic acid, but not arsenic trioxide, degrades the PLZF-RARα fusion protein, without inducing terminal differentiation or apoptosis, in a RA-therapy resistant tt(11;17)(q23;q21) APL patient. Oncogene 18, 1113–1118 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Zhu, J. et al. Retinoic acid induces proteasome-dependent degradation of retinoic acid receptor α (RAR α) and oncogenic RAR α fusion proteins. Proc. Natl. Acad. Sci. USA 96, 14807–14812 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. He, L.Z. et al. Two critical hits for promyelocytic leukemia. Mol. Cell 6, 1131–1141 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Kortlever, R.M., Higgins, P.J. & Bernards, R. Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat. Cell Biol. 8, 877–884 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Furze, R.C. & Rankin, S.M. The role of the bone marrow in neutrophil clearance under homeostatic conditions in the mouse. FASEB J. 22, 3111–3119 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Freund, A., Laberge, R.M., Demaria, M. & Campisi, J. Lamin B1 loss is a senescence-associated biomarker. Mol. Biol. Cell 23, 2066–2075 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ivanov, A. et al. Lysosome-mediated processing of chromatin in senescence. J. Cell Biol. 202, 129–143 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Minucci, S. et al. PML-RAR induces promyelocytic leukemias with high efficiency following retroviral gene transfer into purified murine hematopoietic progenitors. Blood 100, 2989–2995 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Bernardi, R. et al. PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nat. Cell Biol. 6, 665–672 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Vernier, M. et al. Regulation of E2Fs and senescence by PML nuclear bodies. Genes Dev. 25, 41–50 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bischof, O., Nacerddine, K. & Dejean, A. Human papillomavirus oncoprotein E7 targets the promyelocytic leukemia protein and circumvents cellular senescence via the Rb and p53 tumor suppressor pathways. Mol. Cell. Biol. 25, 1013–1024 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bischof, O. et al. Deconstructing PML-induced premature senescence. EMBO J. 21, 3358–3369 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Condemine, W. et al. Characterization of endogenous human promyelocytic leukemia isoforms. Cancer Res. 66, 6192–6198 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Lallemand-Breitenbach, V. et al. Arsenic degrades PML or PML-RARα through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat. Cell Biol. 10, 547–555 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Stadler, M. et al. Transcriptional induction of the PML growth suppressor gene by interferons is mediated through an ISRE and a GAS element. Oncogene 11, 2565–2573 (1995).

    CAS  PubMed  Google Scholar 

  38. Zheng, P.Z. et al. Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proc. Natl. Acad. Sci. USA 102, 7653–7658 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Insinga, A. et al. Impairment of p53 acetylation, stability and function by an oncogenic transcription factor. EMBO J. 23, 1144–1154 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao, Z. et al. p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal. Genes Dev. 24, 1389–1402 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lujambio, A. et al. Non-cell-autonomous tumor suppression by p53. Cell 153, 449–460 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guidez, F. et al. RARα-PLZF overcomes PLZF-mediated repression of CRABPI, contributing to retinoid resistance in t(11;17) acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA 104, 18694–18699 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Akagi, T. et al. Hidden abnormalities and novel classification of t(15;17) acute promyelocytic leukemia (APL) based on genomic alterations. Blood 113, 1741–1748 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gurrieri, C. et al. Mutations of the PML tumor suppressor gene in acute promyelocytic leukemia. Blood 103, 2358–2362 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Muindi, J. et al. Continuous treatment with all-trans retinoic acid causes a progressive reduction in plasma drug concentrations: implications for relapse and retinoid “resistance” in patients with acute promyelocytic leukemia. Blood 79, 299–303 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Tsimberidou, A.M. et al. Single-agent liposomal all-trans retinoic acid can cure some patients with untreated acute promyelocytic leukemia: an update of The University of Texas M. D. Anderson Cancer Center Series. Leuk. Lymphoma 47, 1062–1068 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Stein, E. et al. The coagulopathy of acute promyelocytic leukaemia revisited. Best Pract. Res. Clin. Haematol. 22, 153–163 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Ferbeyre, G. et al. PML is induced by oncogenic ras and promotes premature senescence. Genes Dev. 14, 2015–2027 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Pearson, M. et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406, 207–210 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Guo, A. et al. The function of PML in p53-dependent apoptosis. Nat. Cell Biol. 2, 730–736 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Nardella, C., Clohessy, J.G., Alimonti, A. & Pandolfi, P.P. Pro-senescence therapy for cancer treatment. Nat. Rev. Cancer 11, 503–511 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Meani, N. et al. Molecular signature of retinoic acid treatment in acute promyelocytic leukemia. Oncogene 24, 3358–3368 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Sahin, U. et al. Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins. J. Cell Biol (in the press).

  54. El Hajj, H. et al. Therapy-induced selective loss of leukemia-initiating activity in murine adult T cell leukemia. J. Exp. Med. 207, 2785–2792 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kchour, G. et al. Phase 2 study of the efficacy and safety of the combination of arsenic trioxide, interferon α, and zidovudine in newly diagnosed chronic adult T-cell leukemia/lymphoma (ATL). Blood 113, 6528–6532 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. El Eit, R.M. et al. Effective targeting of chronic myeloid leukemia initiating activity with the combination of arsenic trioxide and interferon α. Int. J. Cancer 134, 988–996 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Bracken, A.P., Ciro, M., Cocito, A. & Helin, K. E2F target genes: unraveling the biology. Trends Biochem. Sci. 29, 409–417 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Coppé, J.P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853–2868 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Ragazzon, B. et al. Transcriptome analysis reveals that p53 and β-catenin alterations occur in a group of aggressive adrenocortical cancers. Cancer Res. 70, 8276–8281 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The laboratory of H.d.T. is supported by the Ligue Nationale contre le Cancer, the Cartes d'Identité des Tumeurs program, the Institut National de la Santé et de la Recherché Médicale (INSERM), the Centre National de la Recherché Scientifique (CNRS), University Paris Diderot, Institut Universitaire de France, Institut National du Cancer, Fondation Association pour la Recherche contre le Cancer (ARC) (Prix Griffuel) and the European Research Council (senior grant 268729 – STEMAPL). J.A. was supported by a fellowship from Ecole Polytechnique and Fondation ARC, K.R. by a fellowship from the Lady Tata and ARC Foundations. S.M. is supported by grants from EPIGEN and the Italian Association for Cancer Research (AIRC). We thank A. Janin, F. Bouhidel and P. Bertheau for assistance with mouse pathology; P. Chambon (Institut de Génétique et de Biologie Moléculaire et Cellulaire) for RARA-specific antibody; S. Lowe (Memorial Sloan-Kettering Cancer Center) for shRNA vectors and Pml-specific antibody; L. Peres and S. Gressens for technical help; M. Pla for the animal facility; N. Setterblad for imaging; E. Del Neyri and V. Dessirier for imaging statistical analysis; and I. Pallavicini and A. Marinelli for mouse work in Milan. We thank E. Raffoux, C. Bailly, P. Fenaux and N. Boissel (Hôpital St. Louis) for providing the patients' blood samples. We thank R. Ohki and L. Attardi for sharing unpublished p53 ChIP-Seq data. We thank all members of the laboratory of H.d.T. for helpful discussions, J. Godet for continuous support and V. Lallemand-Breitenbach, U. Sahin, S. Benhenda, F. Sigaux and J.C. Gluckman for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.A., H.S. and K.R. performed the experiments, J.A., A.d.R. and H.d.T. analyzed the bioinformatic data, S.M. provided reagents and discussed results and J.A., K.R. and H.d.T. analyzed the experiments and wrote the manuscript.

Corresponding author

Correspondence to Hugues de Thé.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 1202 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ablain, J., Rice, K., Soilihi, H. et al. Activation of a promyelocytic leukemia–tumor protein 53 axis underlies acute promyelocytic leukemia cure. Nat Med 20, 167–174 (2014). https://doi.org/10.1038/nm.3441

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3441

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing