Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interaction of P-selectin and PSGL-1 generates microparticles that correct hemostasis in a mouse model of hemophilia A

Abstract

High plasma levels of soluble P-selectin are associated with thrombotic disorders and may predict future cardiovascular events. Mice with high levels of soluble P-selectin have more microparticles in their plasma than do normal mice. Here we show that chimeras of P-selectin and immunoglobulin (P-sel–Ig) induced formation of procoagulant microparticles in human blood through P-selectin glycoprotein ligand-1 (PSGL-1; encoded by the Psgl1 gene, officially known as Selpl). In addition, Psgl1−/− mice produced fewer microparticles after P-sel–Ig infusion and did not spontaneously increase their microparticle count in old age as do wild-type mice. Injected microparticles specifically bound to thrombi and thus could be involved in thrombin generation at sites of injury. Infusion of P-sel–Ig into hemophilia A mice produced a 20-fold increase over control immunoglobulin in microparticles containing tissue factor. This significantly improved the kinetics of fibrin formation in the hemophilia A mice and normalized their tail-bleeding time. P-sel–Ig treatment could become a new approach to sustained control of bleeding in hemophilia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of procoagulant activity in human blood by P-sel–Ig is mediated by PSGL-1.
Figure 2: Recruitment of fluorescent microparticles into a growing thrombus.
Figure 3: P-sel–Ig treatment of hemophilia A mice generates procoagulant microparticles and accelerates the onset of clotting.
Figure 4: P-sel–Ig normalized bleeding time in hemophilia A mice.

Similar content being viewed by others

References

  1. McEver, R.P. Adhesive interactions of leukocytes, platelets, and the vessel wall during hemostasis and inflammation. Thromb. Haemost. 86, 746–756 (2001).

    Article  CAS  Google Scholar 

  2. Palabrica, T. et al. Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets. Nature 359, 848–851 (1992).

    Article  CAS  Google Scholar 

  3. Mayadas, T.N., Johnson, R.C., Rayburn, H., Hynes, R.O. & Wagner, D.D. Leukocyte rolling and extravasation are severely compromised in P selectin-deficient mice. Cell 74, 541–554 (1993).

    Article  CAS  Google Scholar 

  4. Dunlop, L.C. et al. Characterization of GMP-140 (P-selectin) as a circulating plasma protein. J. Exp. Med. 175, 1147–1150 (1992).

    Article  CAS  Google Scholar 

  5. Mehta, P., Patel, K.D., Laue, T.M., Erickson, H.P. & McEver, R.P. Soluble monomeric P-selectin containing only the lectin and epidermal growth factor domains binds to P-selectin glycoprotein ligand-1 on leukocytes. Blood 90, 2381–2389 (1997).

    CAS  PubMed  Google Scholar 

  6. Hartwell, D.W. et al. Role of P-selectin cytoplasmic domain in granular targeting in vivo and in early inflammatory responses. J. Cell Biol. 143, 1129–1141 (1998).

    Article  CAS  Google Scholar 

  7. Andre, P., Hartwell, D., Hrachovinova, I., Saffaripour, S. & Wagner, D.D. Pro-coagulant state resulting from high levels of soluble P-selectin in blood. Proc. Natl. Acad. Sci. USA 97, 13835–13840 (2000).

    Article  CAS  Google Scholar 

  8. Chong, B.H. et al. Plasma P-selectin is increased in thrombotic consumptive platelet disorders. Blood 83, 1535–1541 (1994).

    CAS  PubMed  Google Scholar 

  9. Toombs, C.F. et al. Pretreatment with a blocking monoclonal antibody to P-selectin accelerates pharmacological thrombolysis in a primate model of arterial thrombosis. J. Pharmacol. Exp. Ther. 275, 941–949 (1995).

    CAS  PubMed  Google Scholar 

  10. Wakefield, T.W. et al. P-selectin and TNF inhibition reduce venous thrombosis inflammation. J. Surg. Res. 64, 26–31 (1996).

    Article  CAS  Google Scholar 

  11. Nemerson, Y. Tissue factor and hemostasis. Blood 71, 1–8 (1988).

    CAS  PubMed  Google Scholar 

  12. Hidari, K.I., Weyrich, A.S., Zimmerman, G.A. & McEver, R.P. Engagement of P-selectin glycoprotein ligand-1 enhances tyrosine phosphorylation and activates mitogen-activated protein kinases in human neutrophils. J. Biol. Chem. 272, 28750–28756 (1997).

    Article  CAS  Google Scholar 

  13. Evangelista, V. et al. Platelet/polymorphonuclear leukocyte interaction: P-selectin triggers protein-tyrosine phosphorylation-dependent CD11b/CD18 adhesion: role of PSGL-1 as a signaling molecule. Blood 93, 876–885 (1999).

    CAS  PubMed  Google Scholar 

  14. Sako, D. et al. Expression cloning of a functional glycoprotein ligand for P-selectin. Cell 75, 1179–1186 (1993).

    Article  CAS  Google Scholar 

  15. Giesen, P.L. et al. Blood-borne tissue factor: another view of thrombosis. Proc. Natl. Acad. Sci. USA 96, 2311–2315 (1999).

    Article  CAS  Google Scholar 

  16. Hahne, M., Jager, U., Isenmann, S., Hallmann, R. & Vestweber, D. Five tumor necrosis factor-inducible cell adhesion mechanisms on the surface of mouse endothelioma cells mediate the binding of leukocytes. J. Cell Biol. 121, 655–664 (1993).

    Article  CAS  Google Scholar 

  17. Salzman, E.W. & Hirsh, J. The epidemiology, pathogenesis, and natural history of venous thrombosis. in Hemostasis and Thrombosis: Basic principles and clinical practice (eds. Colman, R.W., Hirsh, J., Marder, V.J. & Salzman, E.W.) 1275–1289 (Lippincott, Philadelphia, 1994).

    Google Scholar 

  18. Denis, C. et al. A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis. Proc. Natl. Acad. Sci. USA 95, 9524–9529 (1998).

    Article  CAS  Google Scholar 

  19. Hafezi-Moghadam, A. & Ley, K. Relevance of L-selectin shedding for leukocyte rolling in vivo. J. Exp. Med. 189, 939–948 (1999).

    Article  CAS  Google Scholar 

  20. Bi, L. et al. Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A. Nat. Genet. 10, 119–121 (1995).

    Article  CAS  Google Scholar 

  21. Muchitsch, E.M. et al. Phenotypic expression of murine hemophilia. Thromb. Haemost. 82, 1371–1373 (1999).

    Article  CAS  Google Scholar 

  22. Gregory, S.A., Morrissey, J.H. & Edgington, T.S. Regulation of tissue factor gene expression in the monocyte procoagulant response to endotoxin. Mol. Cell. Biol. 9, 2752–2755 (1989).

    Article  CAS  Google Scholar 

  23. Celi, A. et al. P-selectin induces the expression of tissue factor on monocytes. Proc. Natl. Acad. Sci. USA 91, 8767–8771 (1994).

    Article  CAS  Google Scholar 

  24. Piccardoni, P. et al. Platelet/polymorphonuclear leukocyte adhesion: a new role for SRC kinases in Mac-1 adhesive function triggered by P-selectin. Blood 98, 108–116 (2001).

    Article  CAS  Google Scholar 

  25. Ushiyama, S., Laue, T.M., Moore, K.L., Erickson, H.P. & McEver, R.P. Structural and functional characterization of monomeric soluble P-selectin and comparison with membrane P-selectin. J. Biol. Chem. 268, 15229–15237 (1993).

    CAS  PubMed  Google Scholar 

  26. Barkalow, F.J., Barkalow, K.L. & Mayadas, T.N. Dimerization of P-selectin in platelets and endothelial cells. Blood 96, 3070–3077 (2000).

    CAS  PubMed  Google Scholar 

  27. Drickamer, K. C-type lectin-like domains. Curr. Opin. Struct. Biol. 9, 585–590 (1999).

    Article  CAS  Google Scholar 

  28. Ishiwata, N. et al. Alternatively spliced isoform of P-selectin is present in vivo as a soluble molecule. J. Biol. Chem. 269, 23708–23715 (1994).

    CAS  PubMed  Google Scholar 

  29. Xia, L. et al. P-selectin glycoprotein ligand-1-deficient mice have impaired leukocyte tethering to E-selectin under flow. J. Clin. Invest. 109, 939–950 (2002).

    Article  CAS  Google Scholar 

  30. Ikeda, H. et al. Increased soluble form of P-selectin in patients with unstable angina. Circulation 92, 1693–1696 (1995).

    Article  CAS  Google Scholar 

  31. Parker, C., Vita, J.A. & Freedman, J.E. Soluble adhesion molecules and unstable coronary artery disease. Atherosclerosis 156, 417–424 (2001).

    Article  CAS  Google Scholar 

  32. Burger, P.C. & Wagner, D.D. Platelet P-selectin facilitates atherosclerotic lesion development. Blood 101, 2661–2666 (2003).

    Article  CAS  Google Scholar 

  33. Hillis, G.S. et al. Elevated soluble P-selectin levels are associated with an increased risk of early adverse events in patients with presumed myocardial ischemia. Am. Heart J. 143, 235–241 (2002).

    Article  CAS  Google Scholar 

  34. Ridker, P.M., Buring, J.E. & Rifai, N. Soluble P-selectin and the risk of future cardiovascular events. Circulation 103, 491–495 (2001).

    Article  CAS  Google Scholar 

  35. Michelson, A.D., Barnard, M.R., Krueger, L.A., Valeri, C.R. & Furman, M.I. Circulating monocyte-platelet aggregates are a more sensitive marker of in vivo platelet activation than platelet surface P-selectin: studies in baboons, human coronary intervention, and human acute myocardial infarction. Circulation 104, 1533–1537 (2001).

    Article  CAS  Google Scholar 

  36. Kumar, A., Villani, M.P., Patel, U.K., Keith, J.C., Jr. & Schaub, R.G. Recombinant soluble form of PSGL-1 accelerates thrombolysis and prevents reocclusion in a porcine model. Circulation 99, 1363–1369 (1999).

    Article  CAS  Google Scholar 

  37. McEver, R.P. P-selectin and PSGL-1: exploiting connections between inflammation and venous thrombosis. Thromb. Haemost. 87, 364–365 (2002).

    Article  CAS  Google Scholar 

  38. Myers, D. et al. New and effective treatment of experimentally induced venous thrombosis with anti-inflammatory rPSGL-Ig. Thromb. Haemost. 87, 374–382 (2002).

    Article  CAS  Google Scholar 

  39. Falati, S., Gross, P., Merrill-Skoloff, G., Furie, B.C. & Furie, B. Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nat. Med. 8, 1175–1181 (2002).

    Article  CAS  Google Scholar 

  40. Rauch, U. et al. Transfer of tissue factor from leukocytes to platelets is mediated by CD15 and tissue factor. Blood 96, 170–175 (2000).

    CAS  PubMed  Google Scholar 

  41. Kung, S.H. et al. Human factor IX corrects the bleeding diathesis of mice with hemophilia B. Blood 91, 784–790 (1998).

    CAS  PubMed  Google Scholar 

  42. Mannucci, P.M. & Tuddenham, E.G. The hemophilias—from royal genes to gene therapy. N. Engl. J. Med. 344, 1773–1779 (2001).

    Article  CAS  Google Scholar 

  43. Lacroix-Desmazes, S. et al. Pathophysiology of inhibitors to factor VIII in patients with haemophilia A. Haemophilia 8, 273–279 (2002).

    Article  CAS  Google Scholar 

  44. DiMichele, D.M. Inhibitors in haemophilia: a primer. Haemophilia 6 (suppl. 1), 38–40 (2000).

    Article  Google Scholar 

  45. Prorock, A.J., Hafezi-Moghadam, A., Laubach, V.E., Liao, J.K. & Ley, K. Vascular protection by estrogen in ischemia-reperfusion injury requires endothelial nitric oxide synthase. Am. J. Physiol. Heart Circ. Physiol. 284, H133–H140 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Ruf for advice and control reagents for tissue factor studies, P. Salaj and Z. Vorlová for procuring blood samples from hemophilia A patients, A. Kumar for helpful discussions, S. Saffaripour and K. Thomas for technical assistance, and L. Cowan and T. Takagi for help preparing the manuscript. This work was supported in part by National Institutes of Health, National Heart, Lung and Blood Institute grants HL 54502 (R.P.M.) and HL56949 and 53756 (D.D.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denisa D Wagner.

Ethics declarations

Competing interests

R.G.S. is an employee of Wyeth Research. R.T.C. and A.W. were employees of Wyeth Research while the study was performed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hrachovinová, I., Cambien, B., Hafezi-Moghadam, A. et al. Interaction of P-selectin and PSGL-1 generates microparticles that correct hemostasis in a mouse model of hemophilia A. Nat Med 9, 1020–1025 (2003). https://doi.org/10.1038/nm899

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm899

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing