Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A reversible copper extrusion–insertion electrode for rechargeable Li batteries

Abstract

Although widely used, the most promising Li-based technologies still suffer from a lack of suitable electrodes. There is therefore a need to seek new materials concepts to satisfy the increasing demands for energy storage worldwide. Here we report on a new layered electrode material, Cu2.33V4O11, which shows a sustainable reversible capacity of 270 mA h g−1 at a voltage of about 2.7 V, and electrochemically reacts with Li in an unusual and spectacular way. The reaction entails a reversible Li-driven displacement process leading to the growth and disappearance of Cu dendrites with a concomitant reversible decomposition and recrystallization of the initial electrode material. We show from structural considerations that the uniqueness of Cu2.33V4O11 is rooted in the peculiar flexibility of the stacked [V4O11]n layers, which is due to the presence of pivot oxygen atoms. Fully reversible displacement reactions could provide a new direction for developing an alternative class of higher energy density Li storage electrodes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrochemical test data for Cu2.33V4O11, and its crystal structure.
Figure 2: In situ X-ray diffraction performed on a Cu2.33V4O11/Li cell discharged and charged at a rate of 1 Li in 20 h.
Figure 3: Cycle testing of an in situ X-ray electrochemical cell at C/5 between 1.5 and 3.5 V.
Figure 4: TEM studies of Cu2.33V4O11 electrodes recovered from Cu2.33V4O11/Li cells.
Figure 5: Live SEM observations of a polymeric Cu2.33V4O11/Li cell cross-section during cycling.
Figure 6: Polyhedral representation of the V oxygenated surrounding (blue) and copper ions (green) arrangement in various copper-based vanadate structures.

Similar content being viewed by others

References

  1. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J.-M. Nano-sized transition metal oxides as negative electrode material for lithium-ion batteries. Nature 407, 496–499 (2000).

    Article  CAS  Google Scholar 

  2. Poizot, P., Laruelle, S., Grugeon, S. & Tarascon, J.-M. Rationalization of the low-potential reactivity of 3D-metal-based inorganic compounds toward Li. J. Electrochem. Soc. 149, A1212–A1217 (2002).

    Article  CAS  Google Scholar 

  3. Obrovac, M.N., Dunlap, R.A., Sanderson, R.J. & Dahn, R.J. The electrochemical displacement reaction of lithium with metal oxides. J. Electrochem. Soc. 148, A576–A588 (2001).

    Article  CAS  Google Scholar 

  4. Pralong, V., Souza, D.S.C., Leung, T. & Nazar, L.F. The mechanism of reversible lithium uptake in CoP3 at low potential: role of the anion. Electrochem. Commun. 4, 516–520 (2002).

    Article  CAS  Google Scholar 

  5. Pereira, N., Dupont, L., Tarascon, J.-M., Klein, L.C. & Amatucci, G.G. The electrochemistry of Cu3N with lithium, a complex system with parallel processes. J. Electrochem. Soc. 150, A1273–A1280 (2003).

    Article  CAS  Google Scholar 

  6. Li, H., Richter, G. & Maier, J. Reversible formation and decomposition of Li clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries. Adv. Mater. 15, 736–739 (2002).

    Article  Google Scholar 

  7. Badway, F., Pereira, N., Cosandey, F. & Amatucci, G.G. Carbon metal fluoride nanocomposites: high capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries. J. Electrochem. Soc. 150, A1318–A1327 (2003).

    Article  CAS  Google Scholar 

  8. Kepler, K.D., Vaughey, J.T. & Thackeray, M.M. LixCu6Sn5 (0 < x < 13): an intermetallic insertion electrode for rechargeable lithium batteries. Electrochem. Solid State Lett. 7, 307–309 (1999).

    Article  Google Scholar 

  9. Fransson, L.M.L. et al. Phase transitions in lithiated Cu2Sb anodes for lithium batteries: an in situ X-ray diffraction study. Electrochem. Commun. 3, 317–323 (2001).

    Article  CAS  Google Scholar 

  10. Tostmann, H., Kropf, A.J., Johson, C.S., Vaughey, J.T. & Thackeray M.M. In situ x-ray absorption studies of electrochemically induced phase changes in lithium-doped InSb. Phys. Rev. B. 66, 014106 (2002).

    Article  Google Scholar 

  11. Brec, R., Prouzet, E. & Ouvrard, G. Transition metal displacement in cathodic host structures upon lithium intercalation. J. Power Sources 43–44, 277–288 (1993).

    Article  Google Scholar 

  12. Takeda, Y., Kanno, R., Noda, M. & Yamamoto, O. Lithium organic electrolyte cells using the copper chevrel phase as cathode. Mater. Res. Bull. 20, 71–77 (1985).

    Article  CAS  Google Scholar 

  13. McKinnon, W.R. & Dahn, J.R. Salting out in intercalation compounds: removing copper from Cu3Mo6S8 by interacting Li. Solid State Commun. 52, 245–248 (1984).

    Article  CAS  Google Scholar 

  14. Tarascon, J.-M., Orlando, T.P. & Neal, M.J. Rechargeable lithium batteries based on the ternary chevrel phase AgMo6S8 as the cathode. J. Electrochem. Soc. 135, 804–809 (1988).

    Article  CAS  Google Scholar 

  15. Eguchi, M., Iwamoto, T., Miura, T. & Kishi, T. Lithiation characteristics of α-CuV2O6 and other nCuO.V2O5 oxides. Solid State Ionics 89, 109–116 (1996).

    Article  CAS  Google Scholar 

  16. Sakurai, Y. & Yamaki, J.-I. Electrochemical reaction of α-Cu2V2O7 with lithium in organic electrolyte. Electrochem. Acta 34, 355–361 (1989).

    Article  CAS  Google Scholar 

  17. Ilic, D. & Neumann, D. Characterization of Cu2V2O7 as cathode material for lithium cells by X-ray and photoelectron spectroscopy. J. Power Sources 43–44, 589–593 (1993).

    Article  Google Scholar 

  18. Giorgetti, M., Mukerjee, S., Passerini, S., McBreen, J. & Smyrl, W.H. Evidence for reversible formation of metallic Cu in Cu0.1V2O5 xerogel cathodes during intercalation cycling of Li+ ions as detected by X-ray absorption spectroscopy. J. Electrochem. Soc. 148, A768–A774 (2001).

    Article  CAS  Google Scholar 

  19. Galy, J. Vanadium pentoxide and vanadium oxide bronzes — structural chemistry of singles (S) and double (D) layers MxV2O5 phases. J. Solid State Chem. 100, 229–245 (1992).

    Article  CAS  Google Scholar 

  20. Withers, R., Millet, P. & Tabira, Y. The inherent displacive structural flexibility of MxV2O5 framework structures. Z. Kristallogr. 215, 357–363 (2000).

    CAS  Google Scholar 

  21. Rozier, P., Satto, C. & Galy, J. The vanadium oxide bronze Cu2.33−xV4O11. Solid state chemistry, XRD. Solid State Sci. 2, 595–605 (2000).

    Article  CAS  Google Scholar 

  22. Badway, F. et al. Metal oxides as negative electrodes from Li-ion cells. Electrochem. Solid State Lett. 5, A115–A118 (2002).

    Article  CAS  Google Scholar 

  23. Chung, S.-Y., Bloking, J.T. & Chiang, Y.-M. Electronically conductive phospho-olivines as lithium storage electrodes. Nature Mater. 1, 123–128 (2002).

    Article  CAS  Google Scholar 

  24. Dollé, M., Sannier, L., Beaudoin, B., Trentin, M. & Tarascon, J.-M. Live scanning electron microscope observations of dendritic growth in lithium/polymer cells. Electrochem. Solid State Lett. 5, A286–A289 (2002).

    Article  Google Scholar 

  25. Rozier, P. & Lidin, S. The composite structure of Cu2.33−xV4O11 . J. Solid State Chem. 172, 319–326 (2003).

    Article  CAS  Google Scholar 

  26. Rozier, P., Galy, J., Chelkowska, G., Kooh, H.-J. & Whangbo, M.-H. Electrical resistivity, magnetic susceptibility, X-ray photoelectron spectroscopy and electronic band structure studies of Cu2.33V4O11 J. Solid State Chem. 166, 382–388 (2002).

    Article  CAS  Google Scholar 

  27. Roisnel, T. & Rodriguez-Carvajal, J. WinPLOTR, downloadable at http://www-llb.cea.fr/fullweb/powder.htm

  28. Tarascon, J.-M., Gozdz, A.S., Schmutz, C., Shokoohi, F. & Warren, P.C. Performance of Bellcore's plastic rechargeable Li-ion batteries. Solid State Ionics 86–88, 49–54 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. G. Karkut, D. Larcher, P. Poizot and B. Beaudoin for many useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-M. Tarascon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morcrette, M., Rozier, P., Dupont, L. et al. A reversible copper extrusion–insertion electrode for rechargeable Li batteries. Nature Mater 2, 755–761 (2003). https://doi.org/10.1038/nmat1002

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1002

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing