Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A versatile tool for conditional gene expression and knockdown

Abstract

Drug-inducible systems allowing the control of gene expression in mammalian cells are invaluable tools for genetic research, and could also fulfill essential roles in gene- and cell-based therapy. Currently available systems, however, often have limited in vivo functionality because of leakiness, insufficient levels of induction, lack of tissue specificity or prohibitively complicated designs. Here we describe a lentiviral vector–based, conditional gene expression system for drug-controllable expression of polymerase (Pol) II promoter−driven transgenes or Pol III promoter−controlled sequences encoding small inhibitory hairpin RNAs (shRNAs). This system has great robustness and versatility, governing tightly controlled gene expression in cell lines, in embryonic or hematopoietic stem cells, in human tumors xenotransplanted into nude mice, in the brain of rats injected intraparenchymally with the vector, and in transgenic mice generated by infection of fertilized oocytes. These results open up promising perspectives for basic or translational research and for the development of gene-based therapeutics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A doxycycline-controllable single lentiviral vector system.
Figure 2: In vitro drug-controllable transgene expression.
Figure 3: Conditional GDNF expression in rat nigrostriatal system using Tet-on or Tet-off vectors.
Figure 4: Conditional expression of endogenous GATA-1 in erythroid cells differentiated in vitro from transduced CD34+ immature progenitors.
Figure 5: Conditional and reversible knockdown of TP53 in vitro and in vivo.
Figure 6: Conditional GFP expression in transgenic mice using the Tet-on or Tet-off systems.

Similar content being viewed by others

References

  1. Toniatti, C., Bujard, H., Cortese, R. & Ciliberto, G. Gene therapy progress and prospects: transcription regulatory systems. Gene Ther. 11, 649–657 (2004).

    Article  CAS  Google Scholar 

  2. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551 (1992).

    Article  CAS  Google Scholar 

  3. Gossen, M. et al. Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769 (1995).

    Article  CAS  Google Scholar 

  4. Urlinger, S. et al. Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc. Natl. Acad. Sci. USA 97, 7963–7968 (2000).

    Article  CAS  Google Scholar 

  5. Rossi, F.M. et al. Tetracycline-regulatable factors with distinct dimerization domains allow reversible growth inhibition by p16. Nat. Genet. 20, 389–393 (1998).

    Article  CAS  Google Scholar 

  6. Vogel, R., Amar, L., Thi, A.D., Saillour, P. & Mallet, J. A single lentivirus vector mediates doxycycline-regulated expression of transgenes in the brain. Hum. Gene Ther. 15, 157–165 (2004).

    Article  CAS  Google Scholar 

  7. Kafri, T., van Praag, H., Gage, F.H. & Verma, I.M. Lentiviral vectors: regulated gene expression. Mol. Ther. 1, 516–521 (2000).

    Article  CAS  Google Scholar 

  8. Vigna, E. et al. Robust and efficient regulation of transgene expression in vivo by improved tetracycline-dependent lentiviral vectors. Mol. Ther. 5, 252–261 (2002).

    Article  CAS  Google Scholar 

  9. Wiznerowicz, M. & Trono, D. Harnessing HIV for therapy, basic research and biotechnology. Trends Biotechnol. 23, 42–47 (2005).

    Article  CAS  Google Scholar 

  10. Hannon, G.J. & Rossi, J.J. Unlocking the potential of the human genome with RNA interference. Nature 431, 371–378 (2004).

    Article  CAS  Google Scholar 

  11. Chen, Y., Stamatoyannopoulos, G. & Song, C.Z. Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro. Cancer Res. 63, 4801–4804 (2003).

    CAS  PubMed  Google Scholar 

  12. Ventura, A. et al. Cre-lox-regulated conditional RNA interference from transgenes. Proc. Natl. Acad. Sci. USA 101, 10380–10385 (2004).

    Article  CAS  Google Scholar 

  13. Gupta, S., Schoer, R.A., Egan, J.E., Hannon, G.J. & Mittal, V. Inducible, reversible, and stable RNA interference in mammalian cells. Proc. Natl. Acad. Sci. USA 101, 1927–1932 (2004).

    Article  CAS  Google Scholar 

  14. Stegmeier, F., Hu, G., Rickles, R.J., Hannon, G.J. & Elledge, S.J. A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc. Natl. Acad. Sci. USA 102, 13212–13217 (2005).

    Article  CAS  Google Scholar 

  15. Dickins, R.A. et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat. Genet. 37, 1289–1295 (2005).

    Article  CAS  Google Scholar 

  16. Margolin, J.F. et al. Kruppel-associated boxes are potent transcriptional repression domains. Proc. Natl. Acad. Sci. USA 91, 4509–4513 (1994).

    Article  CAS  Google Scholar 

  17. Deuschle, U., Meyer, W.K. & Thiesen, H.J. Tetracycline-reversible silencing of eukaryotic promoters. Mol. Cell. Biol. 15, 1907–1914 (1995).

    Article  CAS  Google Scholar 

  18. Moosmann, P., Georgiev, O., Thiesen, H.J., Hagmann, M. & Schaffner, W. Silencing of RNA polymerases II and III-dependent transcription by the KRAB protein domain of KOX1, a Kruppel-type zinc finger factor. Biol. Chem. 378, 669–677 (1997).

    Article  CAS  Google Scholar 

  19. Senatore, B. et al. A variety of RNA polymerases II and III–dependent promoter classes is repressed by factors containing the Kruppel-associated/finger preceding box of zinc finger proteins. Gene 234, 381–394 (1999).

    Article  CAS  Google Scholar 

  20. Wiznerowicz, M. & Trono, D. Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J. Virol. 77, 8957–8961 (2003).

    Article  CAS  Google Scholar 

  21. Urrutia, R. KRAB-containing zinc-finger repressor proteins. Genome Biol. 4, 231 (2003).

    Article  Google Scholar 

  22. Asante, E.A., Gowland, I., Linehan, J.M., Mahal, S.P. & Collinge, J. Expression pattern of a mini human PrP gene promoter in transgenic mice. Neurobiol. Dis. 10, 1–7 (2002).

    Article  CAS  Google Scholar 

  23. Kordower, J.H. et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease. Science 290, 767–773 (2000).

    Article  CAS  Google Scholar 

  24. Kirik, D., Georgievska, B. & Bjorklund, A. Localized striatal delivery of GDNF as a treatment for Parkinson disease. Nat. Neurosci. 7, 105–110 (2004).

    Article  CAS  Google Scholar 

  25. Georgievska, B., Kirik, D. & Bjorklund, A. Aberrant sprouting and downregulation of tyrosine hydroxylase in lesioned nigrostriatal dopamine neurons induced by long-lasting overexpression of glial cell line derived neurotrophic factor in the striatum by lentiviral gene transfer. Exp. Neurol. 177, 461–474 (2002).

    Article  CAS  Google Scholar 

  26. Georgievska, B. et al. Regulated delivery of glial cell line-derived neurotrophic factor into rat striatum, using a tetracycline-dependent lentiviral vector. Hum. Gene Ther. 15, 934–944 (2004).

    Article  CAS  Google Scholar 

  27. Bjorklund, A. et al. Towards a neuroprotective gene therapy for Parkinson's disease: use of adenovirus, AAV and lentivirus vectors for gene transfer of GDNF to the nigrostriatal system in the rat Parkinson model. Brain Res. 886, 82–98 (2000).

    Article  CAS  Google Scholar 

  28. Cantor, A.B. & Orkin, S.H. Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene 21, 3368–3376 (2002).

    Article  CAS  Google Scholar 

  29. Zhang, P. et al. Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. Proc. Natl. Acad. Sci. USA 96, 8705–8710 (1999).

    Article  CAS  Google Scholar 

  30. Lois, C., Hong, E.J., Pease, S., Brown, E.J. & Baltimore, D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295, 868–872 (2002).

    Article  CAS  Google Scholar 

  31. Pfeifer, A., Ikawa, M., Dayn, Y. & Verma, I.M. Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proc. Natl. Acad. Sci. USA 99, 2140–2145 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Padrun, F. Pidoux, C. Sadeghi, L. Winkel, A. Maillard and P. Colin for excellent technical assistance; A. Quazzola for generating the transgenic mice and S. Liao for genotyping them; I. Malanchi and J. Huelsken for help with nude mice experiments; T. Matthes for help with screening for GATA1 shRNAs; and F. Spitz for the gift of D3 mES cells. This work was supported by grants from the Swiss National Science Foundation (to P.A. and D.T.), the European Union (CONSERT integrated project, D.T.; APOPIS contract, P.A.), the Institut Clayton de la Recherche Geneva, and the National Center for Competence in Research Frontiers in Genetics (D.T.), and the Michael J. Fox Foundation (P.A.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Didier Trono or Patrick Aebischer.

Ethics declarations

Competing interests

M.W. and D.T. patented part of the technology described in this article.

Supplementary information

Supplementary Fig. 1

In vitro drug-controllable transgene expression. (PDF 62 kb)

Supplementary Fig. 2

Reversibility of extended tTRKRAB repression. (PDF 119 kb)

Supplementary Fig. 3

Quantification of conditional cycling of p53 knockdown and GFP expression in vitro. (PDF 188 kb)

Supplementary Methods (DOC 59 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szulc, J., Wiznerowicz, M., Sauvain, MO. et al. A versatile tool for conditional gene expression and knockdown. Nat Methods 3, 109–116 (2006). https://doi.org/10.1038/nmeth846

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth846

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing