Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Runx1/AML1 transcription factor selectively regulates development and survival of TrkA nociceptive sensory neurons

Abstract

Neural crest cells (NCCs) can adopt different neuronal fates. In NCCs, neurogenin-2 promotes sensory specification but does not specify different subclasses of sensory neurons. Understanding the gene cascades that direct Trk gene activation may reveal mechanisms generating sensory diversity, because different Trks are expressed in different sensory neuron subpopulations. Here we show in chick and mouse that the Runt transcription factor Runx1 promotes axonal growth, is selectively expressed in neural crest–derived TrkA+ sensory neurons and mediates TrkA transactivation in migratory NCCs. Inhibition of Runt activity depletes TrkA expression and leads to neuronal death. Moreover, Runx1 overexpression is incompatible with multipotency in the migratory neural crest but does not induce expression of pan-neuronal genes. Instead, Runx1-induced neuronal differentiation depends on an existing neurogenin2 proneural gene program. Our data show that Runx1 directs, in a context-dependent manner, key aspects of the establishment of the TrkA+ nociceptive subclass of neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RuntB is expressed in the TrkA+ subpopulation of neural crest–derived trunk and cranial sensory neurons.
Figure 2: Runx1b promotes survival and axonal growth of Ngn2-fated bNCSCs.
Figure 3: Blocking Runt activity is incompatible with establishment of neural crest–derived sensory neurons.
Figure 4: Runx1d-induced apoptosis is preceded by a loss of Trk expression.
Figure 5: Runx1b-expressing cells lose Sox10 expression.
Figure 6: Runx1 selectively controls TrkA expression.

Similar content being viewed by others

References

  1. Carr, P.A. & Nagy, J.I. Emerging relationships between cytochemical properties and sensory modality transmission in primary sensory neurons. Brain Res. Bull. 30, 209–219 (1993).

    Article  CAS  Google Scholar 

  2. Cheung, M. et al. The transcriptional control of trunk neural crest induction, survival, and delamination. Dev. Cell 8, 179–192 (2005).

    Article  CAS  Google Scholar 

  3. Kim, J., Lo, L., Dormand, E. & Anderson, D.J. SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron 38, 17–31 (2003).

    Article  CAS  Google Scholar 

  4. Serbedzija, G.N., Fraser, S.E. & Bronner-Fraser, M. Pathways of trunk neural crest cell migration in the mouse embryo as revealed by vital dye labelling. Development 108, 605–612 (1990).

    CAS  PubMed  Google Scholar 

  5. Kasemeier-Kulesa, J.C., Kulesa, P.M. & Lefcort, F. Imaging neural crest cell dynamics during formation of dorsal root ganglia and sympathetic ganglia. Development 132, 235–245 (2005).

    Article  CAS  Google Scholar 

  6. Lawson, S.N. & Biscoe, T.J. Development of mouse dorsal root ganglia: an autoradiographic and quantitative study. J. Neurocytol. 8, 265–274 (1979).

    Article  CAS  Google Scholar 

  7. Vogel, K.S. & Davies, A.M. The duration of neurotrophic factor independence in early sensory neurons is matched to the time course of target field innervation. Neuron 7, 819–830 (1991).

    Article  CAS  Google Scholar 

  8. Ernfors, P., Merlio, J.P. & Persson, H. Cells Expressing mRNA for neurotrophins and their receptors during embryonic rat development. Eur. J. Neurosci. 4, 1140–1158 (1992).

    Article  Google Scholar 

  9. Crowley, C. et al. Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell 76, 1001–1011 (1994).

    Article  CAS  Google Scholar 

  10. Smeyne, R.J. et al. Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature 368, 246–249 (1994).

    Article  CAS  Google Scholar 

  11. Ernfors, P., Lee, K.F., Kucera, J. & Jaenisch, R. Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents. Cell 77, 503–512 (1994).

    Article  CAS  Google Scholar 

  12. Patel, T.D., Jackman, A., Rice, F.L., Kucera, J. & Snider, W.D. Development of sensory neurons in the absence of NGF/TrkA signaling in vivo. Neuron 25, 345–357 (2000).

    Article  CAS  Google Scholar 

  13. Patel, T.D. et al. Peripheral NT3 signaling is required for ETS protein expression and central patterning of proprioceptive sensory afferents. Neuron 38, 403–416 (2003).

    Article  CAS  Google Scholar 

  14. Moqrich, A. et al. Expressing TrkC from the TrkA locus causes a subset of dorsal root ganglia neurons to switch fate. Nat. Neurosci. 7, 812–818 (2004).

    Article  CAS  Google Scholar 

  15. Coffman, J.A. Runx transcription factors and the developmental balance between cell proliferation and differentiation. Cell Biol. Int. 27, 315–324 (2003).

    Article  CAS  Google Scholar 

  16. Levanon, D. et al. The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J. 21, 3454–3463 (2002).

    Article  CAS  Google Scholar 

  17. Inoue, K. et al. Runx3 controls the axonal projection of proprioceptive dorsal root ganglion neurons. Nat. Neurosci. 5, 946–954 (2002).

    Article  CAS  Google Scholar 

  18. Levanon, D. et al. Spatial and temporal expression pattern of Runx3 (Aml2) and Runx1 (Aml1) indicates non-redundant functions during mouse embryogenesis. Mech. Dev. 109, 413–417 (2001).

    Article  CAS  Google Scholar 

  19. Perez, S.E., Rebelo, S. & Anderson, D.J. Early specification of sensory neuron fate revealed by expression and function of neurogenins in the chick embryo. Development 126, 1715–1728 (1999).

    CAS  PubMed  Google Scholar 

  20. Hamburger, V. & Hamilton, H.L. A series of normal stages in the development of the chick embryo. J. Morphol. 88, 49–92 (1951).

    Article  CAS  Google Scholar 

  21. Hjerling-Leffler, J. et al. The boundary cap: a source of neural crest stem cells that generate multiple sensory neuron subtypes. Development 132, 2623–2632 (2005).

    Article  CAS  Google Scholar 

  22. Falk, A. et al. Gene delivery to adult neural stem cells. Exp. Cell Res. 279, 34–39 (2002).

    Article  CAS  Google Scholar 

  23. Sholl, D.A. Dendritic organization in the neurons of the visual and motor cortices of the cat. J. Anat. 87, 387–406 (1953).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bae, S.C. et al. PEBP2 alpha B/mouse AML1 consists of multiple isoforms that possess differential transactivation potentials. Mol. Cell. Biol. 14, 3242–3252 (1994).

    Article  CAS  Google Scholar 

  25. Meyers, S., Lenny, N. & Hiebert, S.W. The t(8;21) fusion protein interferes with AML-1B-dependent transcriptional activation. Mol. Cell. Biol. 15, 1974–1982 (1995).

    Article  CAS  Google Scholar 

  26. Tanaka, T. et al. An acute myeloid leukemia gene, AML1, regulates hemopoietic myeloid cell differentiation and transcriptional activation antagonistically by two alternative spliced forms. EMBO J. 14, 341–350 (1995b).

    Article  CAS  Google Scholar 

  27. Wang, Q. et al. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc. Natl. Acad. Sci. USA 93, 3444–3449 (1996).

    Article  CAS  Google Scholar 

  28. Okuda, T., van Deursen, J., Hiebert, S.W., Grosveld, G. & Downing, J.R. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84, 321–330 (1996).

    Article  CAS  Google Scholar 

  29. Britsch, S. et al. The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev. 15, 66–78 (2001).

    Article  CAS  Google Scholar 

  30. Ma, L., Lei, L., Eng, S.R., Turner, E. & Parada, L.F. Brn3a regulation of TrkA/NGF receptor expression in developing sensory neurons. Development 130, 3525–3534 (2003).

    Article  CAS  Google Scholar 

  31. Ma, L., Merenmies, J. & Parada, L.F. Molecular characterization of the TrkA/NGF receptor minimal enhancer reveals regulation by multiple cis elements to drive embryonic neuron expression. Development 127, 3777–3788 (2000).

    CAS  PubMed  Google Scholar 

  32. Komori, T. et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89, 755–764 (1997).

    Article  CAS  Google Scholar 

  33. Otto, F. et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89, 765–771 (1997).

    Article  CAS  Google Scholar 

  34. Ducy, P., Zhang, R., Geoffroy, V., Ridall, A.L. & Karsenty, G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89, 747–754 (1997).

    Article  CAS  Google Scholar 

  35. Theriault, F.M. et al. Role for Runx1 in the proliferation and neuronal differentiation of selected progenitor cells in the mammalian nervous system. J. Neurosci. 25, 2050–2061 (2005).

    Article  CAS  Google Scholar 

  36. Theriault, F.M., Roy, P. & Stifani, S. AML1/Runx1 is important for the development of hindbrain cholinergic branchiovisceral motor neurons and selected cranial sensory neurons. Proc. Natl. Acad. Sci. USA 101, 10343–10348 (2004).

    Article  CAS  Google Scholar 

  37. Levi-Montalcini, R. The nerve growth factor 35 years later. Science 237, 1154–1162 (1987).

    Article  CAS  Google Scholar 

  38. Gerrero, M.R. et al. Brn-3.0: a POU-domain protein expressed in the sensory, immune, and endocrine systems that functions on elements distinct from known octamer motifs. Proc. Natl. Acad. Sci. USA 90, 10841–10845 (1993).

    Article  CAS  Google Scholar 

  39. Huang, E.J. et al. POU domain factor Brn-3a controls the differentiation and survival of trigeminal neurons by regulating Trk receptor expression. Development 126, 2869–2882 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Fedtsova, N.G. & Turner, E.E. Brn-3.0 expression identifies early post-mitotic CNS neurons and sensory neural precursors. Mech. Dev. 53, 291–304 (1995).

    Article  CAS  Google Scholar 

  41. McEvilly, R.J. et al. Requirement for Brn-3.0 in differentiation and survival of sensory and motor neurons. Nature 384, 574–577 (1996).

    Article  CAS  Google Scholar 

  42. Xiang, M., Gan, L., Zhou, L., Klein, W.H. & Nathans, J. Targeted deletion of the mouse POU domain gene Brn-3a causes selective loss of neurons in the brainstem and trigeminal ganglion, uncoordinated limb movement, and impaired suckling. Proc. Natl. Acad. Sci. USA 93, 11950–11955 (1996).

    Article  CAS  Google Scholar 

  43. Rifkin, J.T., Todd, V.J., Anderson, L.W. & Lefcort, F. Dynamic expression of neurotrophin receptors during sensory neuron genesis and differentiation. Dev. Biol. 227, 465–480 (2000).

    Article  CAS  Google Scholar 

  44. Eng, S.R., Lanier, J., Fedtsova, N. & Turner, E.E. Coordinated regulation of gene expression by Brn3a in developing sensory ganglia. Development 131, 3859–3870 (2004).

    Article  CAS  Google Scholar 

  45. Zirlinger, M., Lo, L., McMahon, J., McMahon, A.P. & Anderson, D.J. Transient expression of the bHLH factor neurogenin-2 marks a subpopulation of neural crest cells biased for a sensory but not a neuronal fate. Proc. Natl. Acad. Sci. USA 99, 8084–8089 (2002).

    Article  CAS  Google Scholar 

  46. Nibu, K., Li, G., Kaga, K. & Rothstein, J.L. bFGF induces differentiation and death of olfactory neuroblastoma cells. Biochem. Biophys. Res. Commun. 279, 172–180 (2000).

    Article  CAS  Google Scholar 

  47. Tanaka, K. et al. Increased expression of AML1 during retinoic-acid-induced differentiation of U937 cells. Biochem. Biophys. Res. Commun. 211, 1023–1030 (1995a).

    Article  CAS  Google Scholar 

  48. Oakley, R.A. et al. Neurotrophin-3 promotes the differentiation of muscle spindle afferents in the absence of peripheral targets. J. Neurosci. 17, 4262–4274 (1997).

    Article  CAS  Google Scholar 

  49. von Bartheld, C.S. et al. Retrograde transport of neurotrophins from the eye to the brain in chick embryos: roles of the p75NTR and trkB receptors. J. Neurosci. 16, 2995–3008 (1996).

    Article  CAS  Google Scholar 

  50. Lefcort, F., Clary, D.O., Rusoff, A.C. & Reichardt, L.F. Inhibition of the NT-3 receptor TrkC, early in chick embryogenesis, results in severe reductions in multiple neuronal subpopulations in the dorsal root ganglia. J. Neurosci. 16, 3704–3713 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Tello for technical assistance and A. Käller for secretarial assistance. This work was supported by the Swedish Medical Research Council, the Swedish Foundation for Strategic Research (grant from the Center of Excellence in Developmental Biology), the Hedlunds Foundation, AstraZeneca Mölndal and the US Public Health Service (grant NS 16033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrik Ernfors.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

RuntB expression in chick cranial sensory ganglia at stage HH29. (PDF 35108 kb)

Supplementary Fig. 2

Characterisation of proneural gene expression in bNCSCs and a cell autonomous function of Runx1 in cell survival. (PDF 383 kb)

Supplementary Fig. 3

Electroporation of DNA constructs into the chick leads to overexpression in cell populations of neural crest origin. (PDF 11292 kb)

Supplementary Fig. 4

Blocking Runt activity is incompatible with neuronal differentiation in the DRG. (PDF 2634 kb)

Supplementary Fig. 5

Identification of a conserved Runt binding site in vertebrate TrkA minimal enhancers and in vitro transactivation of the promoter by Runx1. (PDF 3148 kb)

Supplementary Fig. 6

Genetic interaction between Runx1 and other transcriptional regulators during sensory neuron development. DRG sensory neurons are derived from NCCs. (PDF 545 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marmigère, F., Montelius, A., Wegner, M. et al. The Runx1/AML1 transcription factor selectively regulates development and survival of TrkA nociceptive sensory neurons. Nat Neurosci 9, 180–187 (2006). https://doi.org/10.1038/nn1631

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1631

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing