Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control of planar divisions by the G-protein regulator LGN maintains progenitors in the chick neuroepithelium

Abstract

The spatio-temporal regulation of symmetrical as opposed to asymmetric cell divisions directs the fate and location of cells in the developing CNS. In invertebrates, G-protein regulators control spindle orientation in asymmetric divisions, which generate progeny with different identities. We investigated the role of the G-protein regulator LGN (also called Gpsm2) in spindle orientation and cell-fate determination in the spinal cord neuroepithelium of the developing chick embryo. We show that LGN is located at the cell cortex and spindle poles of neural progenitors, and that it regulates spindle movements and orientation. LGN promotes planar divisions in the early spinal cord. Interfering with LGN function randomizes the plane of division. Notably, this does not affect cell fate, but frequently leads one daughter of proliferative symmetric divisions to exit the neuroepithelium prematurely and to proliferate aberrantly in the mantle zone. Hence, tight control of planar spindle orientation maintains neural progenitors in the neuroepithelium, and regulates the proper development of the nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of LGN in the chick embryonic neural tube.
Figure 2: cLGN regulates planar spindle orientation in neuroepithelial cells.
Figure 3: Ct-cLGN expression reduces metaphase plate movements in neuroepithelial cells.
Figure 4: In vivo clonal analysis of the fate and distribution of pairs of sister cells.
Figure 5: Ectopic expression of progenitor markers in the mantle zone of cLGN-deficient embryos.
Figure 6: Hyperproliferation of abventricular progenitors in cLGN-deficient embryos.
Figure 7: Ectopic progenitors cycle for several days in the mantle zone independently from cLGN misregulation.

Similar content being viewed by others

References

  1. Rakic, P. Specification of cerebral cortical areas. Science 241, 170–176 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. McConnell, S.K. Constructing the cerebral cortex: neurogenesis and fate determination. Neuron 15, 761–768 (1995).

    CAS  PubMed  Google Scholar 

  3. Fishell, G. & Kriegstein, A.R. Neurons from radial glia: the consequences of asymmetric inheritance. Curr. Opin. Neurobiol. 13, 34–41 (2003).

    CAS  PubMed  Google Scholar 

  4. Huttner, W.B. & Brand, M. Asymmetric division and polarity of neuroepithelial cells. Curr. Opin. Neurobiol. 7, 29–39 (1997).

    CAS  PubMed  Google Scholar 

  5. Gotz, M. & Huttner, W.B. The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol. 6, 777–788 (2005).

    PubMed  Google Scholar 

  6. Chenn, A. & McConnell, S.K. Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell 82, 631–641 (1995).

    CAS  PubMed  Google Scholar 

  7. Kosodo, Y. et al. Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J. 23, 2314–2324 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Huttner, W.B. & Kosodo, Y. Symmetric versus asymmetric cell division during neurogenesis in the developing vertebrate central nervous system. Curr. Opin. Cell Biol. 17, 648–657 (2005).

    CAS  PubMed  Google Scholar 

  9. Fish, J.L., Kosodo, Y., Enard, W., Paabo, S. & Huttner, W.B. Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. Proc. Natl. Acad. Sci. USA 103, 10438–10443 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sanada, K. & Tsai, L.H. G protein βχ subunits and AGS3 control spindle orientation and asymmetric cell fate of cerebral cortical progenitors. Cell 122, 119–131 (2005).

    CAS  PubMed  Google Scholar 

  11. Bellaiche, Y. & Gotta, M. Heterotrimeric G proteins and regulation of size asymmetry during cell division. Curr. Opin. Cell Biol. 17, 658–663 (2005).

    CAS  PubMed  Google Scholar 

  12. Yu, F., Kuo, C.T. & Jan, Y.N. Drosophila neuroblast asymmetric cell division: recent advances and implications for stem cell biology. Neuron 51, 13–20 (2006).

    CAS  PubMed  Google Scholar 

  13. Schaefer, M., Petronczki, M., Dorner, D., Forte, M. & Knoblich, J.A. Heterotrimeric G proteins direct two modes of asymmetric cell division in the Drosophila nervous system. Cell 107, 183–194 (2001).

    CAS  PubMed  Google Scholar 

  14. Fuse, N., Hisata, K., Katzen, A.L. & Matsuzaki, F. Heterotrimeric G proteins regulate daughter cell size asymmetry in Drosophila neuroblast divisions. Curr. Biol. 13, 947–954 (2003).

    CAS  PubMed  Google Scholar 

  15. Izumi, Y., Ohta, N., Itoh-Furuya, A., Fuse, N. & Matsuzaki, F. Differential functions of G protein and Baz-aPKC signaling pathways in Drosophila neuroblast asymmetric division. J. Cell Biol. 164, 729–738 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Schaefer, M., Shevchenko, A. & Knoblich, J.A. A protein complex containing Inscuteable and the Gα-binding protein Pins orients asymmetric cell divisions in Drosophila. Curr. Biol. 10, 353–362 (2000).

    CAS  PubMed  Google Scholar 

  17. Yu, F., Morin, X., Cai, Y., Yang, X. & Chia, W. Analysis of partner of inscuteable, a novel player of Drosophila asymmetric divisions, reveals two distinct steps in inscuteable apical localization. Cell 100, 399–409 (2000).

    CAS  PubMed  Google Scholar 

  18. Yu, F. et al. Locomotion defects, together with Pins, regulates heterotrimeric G-protein signaling during Drosophila neuroblast asymmetric divisions. Genes Dev. 19, 1341–1353 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, H. et al. Ric-8 controls Drosophila neural progenitor asymmetric division by regulating heterotrimeric G proteins. Nat. Cell Biol. 7, 1091–1098 (2005).

    CAS  PubMed  Google Scholar 

  20. Hampoelz, B., Hoeller, O., Bowman, S.K., Dunican, D. & Knoblich, J.A. Drosophila Ric-8 is essential for plasma-membrane localization of heterotrimeric G proteins. Nat. Cell Biol. 7, 1099–1105 (2005).

    CAS  PubMed  Google Scholar 

  21. Bowman, S.K., Neumuller, R.A., Novatchkova, M., Du, Q. & Knoblich, J.A. The Drosophila NuMA homolog Mud regulates spindle orientation in asymmetric cell division. Dev. Cell 10, 731–742 (2006).

    CAS  PubMed  Google Scholar 

  22. Izumi, Y., Ohta, N., Hisata, K., Raabe, T. & Matsuzaki, F. Drosophila Pins-binding protein Mud regulates spindle-polarity coupling and centrosome organization. Nat. Cell Biol. 8, 586–593 (2006).

    CAS  PubMed  Google Scholar 

  23. Siller, K.H., Cabernard, C. & Doe, C.Q. The NuMA-related Mud protein binds Pins and regulates spindle orientation in Drosophila neuroblasts. Nat. Cell Biol. 8, 594–600 (2006).

    CAS  PubMed  Google Scholar 

  24. Colombo, K. et al. Translation of polarity cues into asymmetric spindle positioning in Caenorhabditis elegans embryos. Science 300, 1957–1961 (2003).

    CAS  PubMed  Google Scholar 

  25. Gotta, M., Dong, Y., Peterson, Y.K., Lanier, S.M. & Ahringer, J. Asymmetrically distributed C. elegans homologs of AGS3/PINS control spindle position in the early embryo. Curr. Biol. 13, 1029–1037 (2003).

    CAS  PubMed  Google Scholar 

  26. Voronina, E. & Wessel, G.M. Activator of G protein signaling in asymmetric cell divisions of the sea urchin embryo. Dev. Growth Differ. 48, 549–557 (2006).

    CAS  PubMed  Google Scholar 

  27. Mochizuki, N., Cho, G., Wen, B. & Insel, P.A. Identification and cDNA cloning of a novel human mosaic protein, LGN, based on interaction with G alpha i2. Gene 181, 39–43 (1996).

    CAS  PubMed  Google Scholar 

  28. Takesono, A. et al. Receptor-independent activators of heterotrimeric G protein signaling pathways. J. Biol. Chem. 274, 33202–33205 (1999).

    CAS  PubMed  Google Scholar 

  29. Du, Q., Stukenberg, P.T. & Macara, I.G. A mammalian partner of inscuteable binds NuMA and regulates mitotic spindle organization. Nat. Cell Biol. 3, 1069–1075 (2001).

    CAS  PubMed  Google Scholar 

  30. Siderovski, D.P., Diverse-Pierluissi, M. & De Vries, L. The GoLoco motif: a Galphai/o binding motif and potential guanine-nucleotide exchange factor. Trends Biochem. Sci. 24, 340–341 (1999).

    CAS  PubMed  Google Scholar 

  31. Willard, F.S., Kimple, R.J. & Siderovski, D.P. Return of the GDI: the GoLoco motif in cell division. Annu. Rev. Biochem. 73, 925–951 (2004).

    CAS  PubMed  Google Scholar 

  32. Blumer, J.B., Kuriyama, R., Gettys, T.W. & Lanier, S.M. The G protein regulatory (GPR) motif-containing Leu-Gly-Asn-enriched protein (LGN) and Giα3 influence cortical positioning of the mitotic spindle poles at metaphase in symmetrically dividing mammalian cells. Eur. J. Cell Biol. 85, 1233–1240 (2006).

    CAS  PubMed  Google Scholar 

  33. Du, Q. & Macara, I.G. Mammalian Pins is a conformational switch that links NuMA to heterotrimeric G proteins. Cell 119, 503–516 (2004).

    CAS  PubMed  Google Scholar 

  34. Kaushik, R., Yu, F., Chia, W., Yang, X. & Bahri, S. Subcellular localization of LGN during mitosis: evidence for its cortical localization in mitotic cell culture systems and its requirement for normal cell cycle progression. Mol. Biol. Cell 14, 3144–3155 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yu, F. et al. A mouse homologue of Drosophila pins can asymmetrically localize and substitute for pins function in Drosophila neuroblasts. J. Cell Sci. 116, 887–896 (2003).

    CAS  PubMed  Google Scholar 

  36. Blumer, J.B., Chandler, L.J. & Lanier, S.M. Expression analysis and subcellular distribution of the two G protein regulators AGS3 and LGN indicate distinct functionality. Localization of LGN to the midbody during cytokinesis. J. Biol. Chem. 277, 15897–15903 (2002).

    CAS  PubMed  Google Scholar 

  37. Das, R.M. et al. A robust system for RNA interference in the chicken using a modified microRNA operon. Dev. Biol. 294, 554–563 (2006).

    CAS  PubMed  Google Scholar 

  38. Reinsch, S. & Karsenti, E. Orientation of spindle axis and distribution of plasma membrane proteins during cell division in polarized MDCKII cells. J. Cell Biol. 126, 1509–1526 (1994).

    CAS  PubMed  Google Scholar 

  39. Adams, R.J. Metaphase spindles rotate in the neuroepithelium of rat cerebral cortex. J. Neurosci. 16, 7610–7618 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Haydar, T.F., Ang, E., Jr. & Rakic, P. Mitotic spindle rotation and mode of cell division in the developing telencephalon. Proc. Natl. Acad. Sci. USA 100, 2890–2895 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Roszko, I., Afonso, C., Henrique, D. & Mathis, L. Key role played by RhoA in the balance between planar and apico-basal cell divisions in the chick neuroepithelium. Dev. Biol. 298, 212–224 (2006).

    CAS  PubMed  Google Scholar 

  42. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kraut, R., Chia, W., Jan, L.Y., Jan, Y.N. & Knoblich, J.A. Role of inscuteable in orienting asymmetric cell divisions in Drosophila. Nature 383, 50–55 (1996).

    CAS  PubMed  Google Scholar 

  44. Zigman, M. et al. Mammalian inscuteable regulates spindle orientation and cell fate in the developing retina. Neuron 48, 539–545 (2005).

    CAS  PubMed  Google Scholar 

  45. Yu, F., Ong, C.T., Chia, W. & Yang, X. Membrane targeting and asymmetric localization of Drosophila partner of inscuteable are discrete steps controlled by distinct regions of the protein. Mol. Cell. Biol. 22, 4230–4240 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lechler, T. & Fuchs, E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437, 275–280 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Pizzinat, N., Takesono, A. & Lanier, S.M. Identification of a truncated form of the G protein regulator AGS3 in heart that lacks the tetratricopeptide repeat domains. J. Biol. Chem. 276, 16601–16610 (2001).

    CAS  PubMed  Google Scholar 

  48. Cai, Y., Yu, F., Lin, S., Chia, W. & Yang, X. Apical complex genes control mitotic spindle geometry and relative size of daughter cells in Drosophila neuroblast and pI asymmetric divisions. Cell 112, 51–62 (2003).

    CAS  PubMed  Google Scholar 

  49. Wilcock, A.C., Swedlow, J.R. & Storey, K.G. Mitotic spindle orientation distinguishes stem cell and terminal modes of neuron production in the early spinal cord. Development 134, 1943–1954 (2007).

    CAS  PubMed  Google Scholar 

  50. Hilgers, V., Pourquie, O. & Dubrulle, J. In vivo analysis of mRNA stability using the Tet-Off system in the chicken embryo. Dev. Biol. 284, 292–300 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the French Centre National de la Recherche Scientifique and an Association Française contre les Myopathies grant (11942-SR-C) to X.M. F.J. is the recipient of a PhD fellowship from the French Ministry for Higher Education and Research. We thank J. Hazan (King's College London, UK) for RT-PCR cloning of the full-length chick LGN cDNA, D. Henrique (University of Lisbon, Portugal) for the hes5-1 plasmid, K. Hadjantonakis (Sloan-Kettering Institute, New York) for the pCX-H2B-EGFP plasmid, F. Yu (Temasek Life Sciences Laboratory, Singapore) and R. Kaushik (IMCB, Singapore) for mouse LGN cDNA, and the PICsL imaging core facility for expert technical assistance. We thank C. Goridis and V. Dubreuil (Ecole Normale Supérieure, Paris), W. Chia (Temasek Life Sciences Laboratory, Singapore), A. Moqrich (IBDML Marseille) and members of the Durbec group for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

X.M. and P.D. supervised the project, X.M. and F.J. performed the experiments and X.M. wrote the manuscript.

Corresponding author

Correspondence to Xavier Morin.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 456 kb)

Supplementary Video 1

Time-lapse analysis of metaphase movements in a control embryo. H2B-EGFP is used as a chromosomal reporter. The ventricular surface (apical) is on top. Each frame is a projection of a 21-μm-thick stack of confocal sections taken at 1-μm z-intervals. Frames were taken at 1-min intervals over a 200-min period. Most metaphase nuclei display strong rotation and oscillatory movements. Colored asterisks mark several representative cells during prophase, and are erased at the onset of metaphase for better visualization of metaphase movements and anaphase. (MOV 3007 kb)

Supplementary Video 2

Time-lapse analysis of metaphase movements in a Ct-cLGN expressing embryo. H2B-EGFP is used as a chromosomal reporter. The ventricular surface (apical) is on top. Each frame is a projection of a 21-μm-thick stack of confocal sections taken at 1-μm z intervals. Frames were taken at 1-min intervals over a 180-min period. Metaphase nuclei display very weak oscillatory movements. Colored asterisks mark several representative cells during prophase, and are erased at the onset of metaphase for better visualization of metaphase movements and anaphase. (MOV 2787 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morin, X., Jaouen, F. & Durbec, P. Control of planar divisions by the G-protein regulator LGN maintains progenitors in the chick neuroepithelium. Nat Neurosci 10, 1440–1448 (2007). https://doi.org/10.1038/nn1984

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1984

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing