Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Feeder-free culture of human embryonic stem cells in conditioned medium for efficient genetic modification

Abstract

Realizing the potential of human embryonic stem cells (hESCs) in research and commercial applications requires generic protocols for culture, expansion and genetic modification that function between multiple lines. Here we describe a feeder-free hESC culture protocol that was tested in 13 independent hESC lines derived in five different laboratories. The procedure is based on Matrigel adaptation in mouse embryonic fiboblast conditioned medium (CM) followed by monolayer culture of hESC. When combined, these techniques provide a robust hESC culture platform, suitable for high-efficiency genetic modification via plasmid transfection (using lipofection or electroporation), siRNA knockdown and viral transduction. In contrast to other available protocols, it does not require optimization for individual lines. hESC transiently expressing ectopic genes are obtained within 9 d and stable transgenic lines within 3 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photographs of human embryonic stem cell (hESC) at different stages.
Figure 2: Flowchart for experimental procedures.

Similar content being viewed by others

References

  1. Osafune, K. et al. Marked differences in differentiation propensity among human embryonic stem cell lines. Nat. Biotechnol. 26, 313–315 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Giudice, A. & Trounson, A. Genetic modification of human embryonic stem cells for derivation of target cells. Cell Stem Cell 2, 422–433 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Davis, R.P. et al. Targeting a GFP reporter gene to the MIXL1 locus of human embryonic stem cells identifies human primitive streak-like cells and enables isolation of primitive hematopoietic precursors. Blood 111, 1876–1884 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Urbach, A., Schuldiner, M. & Benvenisty, N. Modeling for Lesch-Nyhan disease by gene targeting in human embryonic stem cells. Stem Cells 22, 635–641 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Costa, M. et al. A method for genetic modification of human embryonic stem cells using electroporation. Nat. Protoc. 2, 792–796 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Zwaka, T.P. & Thomson, J.A. Homologous recombination in human embryonic stem cells. Nat. Biotechnol. 21, 319–321 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Draper, J.S. et al. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat. Biotechnol. 22, 53–54 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Braam, S.R. et al. Improved genetic manipulation of human embryonic stem cells. Nat. Meth. 5, 389–392 (2008).

    Article  CAS  Google Scholar 

  9. Liew, C.-G., Draper, J.S., Walsh, J., Moore, H. & Andrews, P.W. Transient and stable transgene expression in human embryonic stem cells. Stem Cells 25, 1521–1528 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Dormeyer, W. et al. Plasma membrane proteomics of human embryonic stem cells and human embryonal carcinoma cells. J. Proteome Res. 7, 2936–2951 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Ludwig, T.E. et al. Derivation of human embryonic stem cells in defined conditions. Nat. Biotechnol. 24, 185–187 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Ng, E.S., Davis, R., Stanley, E.G. & Elefanty, A.G. A protocol describing the use of a recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies. Nat. Protoc. 3, 768–776 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Wu, S., Ying, G., Wu, Q. & Capecchi, M.R. A protocol for constructing gene targeting vectors: generating knockout mice for the cadherin family and beyond. Nat. Protoc. 3, 1056–1076 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Kameda, T., Smuga-Otto, K. & Thomson, J.A. A severe de novo methylation of episomal vectors by human ES cells. Biochem. Biophys. Res. Commun. 349, 1269–1277 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Anderson, D. et al. Transgenic enrichment of cardiomyocytes from human embryonic stem cells. Mol. Ther. 15, 2027–2036 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Cowan, C.A. et al. Derivation of embryonic stem-cell lines from human blastocysts. N. Engl. J. Med. 350, 1353–1356 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Burridge, P.W. et al. Improved human embryonic stem cell embryoid body homogeneity and cardiomyocyte differentiation from a novel V-96 plate aggregation system highlights interline variability. Stem Cells 25, 929–938 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Mitalipova, M. et al. Human embryonic stem cell lines derived from discarded embryos. Stem Cells 21, 521–526 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Reubinoff, B.E., Pera, M.F., Fong, C.Y., Trounson, A. & Bongso, A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18, 399–404 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Costa, M. et al. The hESC line Envy expresses high levels of GFP in all differentiated progeny. Nat. Meth. 2, 259–260 (2005).

    Article  CAS  Google Scholar 

  21. Michaoska, A.E. Unit 1C.3 Isolation and propagation of mouse embryonic fibroblasts and preparation of mouse embryonic feeder layer cells. Curr. Protoc. Stem Cell Biol. 3, 1C.3.1–1C.3.17 (2007).

    Google Scholar 

  22. Baker, D.E.C. et al. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat. Biotechnol. 25, 207–215 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Shapiro, H.M. Practical Flow Cytometry (Wiley Interscience, New York, 2003).

    Book  Google Scholar 

  24. Brown, C.M. Fluorescence microscopy—avoiding the pitfalls. J. Cell Sci. 120, 1703–1705 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to D. Ward-van Oostwaard, L. Zeinstra and S. van den Brink for expert technical assistance. We thank Drs Chad Cowan and Douglas Melton for the gift of HUES-1, -5, -7 and -15. This work is/has been supported by the Dutch Program for Tissue Engineering (S.R.B.), European Community's Sixth Framework Programme contract ('HeartRepair') LSHM-CT-2005-018630 (R.P.), the Biotechnology and Biological Sciences Research Council, British Heart Foundation and the University of Nottingham (C.D., E.M. and L.E.Y.).

Author information

Authors and Affiliations

Authors

Contributions

S.R.B. and C.D. contributed equally to this work.

Corresponding authors

Correspondence to Chris Denning or Christine L Mummery.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braam, S., Denning, C., Matsa, E. et al. Feeder-free culture of human embryonic stem cells in conditioned medium for efficient genetic modification. Nat Protoc 3, 1435–1443 (2008). https://doi.org/10.1038/nprot.2008.140

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.140

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing