Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dendritic-cell trafficking to lymph nodes through lymphatic vessels

Key Points

  • The migration of dendritic cells (DCs) to lymph nodes from the periphery supports the onset of immune responses. Whereas several molecules that are required for DCs to leave the periphery have now been defined, much remains to be discovered about how DCs enter and pass through the lymphatic vessels to reach the T-cell zone of the lymph node.

  • Initial afferent lymphatic vessels are organized as small capillaries that support DC entry. These vessels converge with larger collecting vessels that, ultimately, arrive and branch at the subcapsular sinus of the lymph node.

  • The collecting vessels operate as intrinsic pumps that might participate in driving DCs to the lymph node.

  • DCs approach lymphatic vessels by chemotaxis that depends mainly on the chemokine receptor CC-chemokine receptor 7 (CCR7).

  • Data from mice that have mutations in the ligands for CCR7 do not indicate the location where CCR7 and its ligands act during migration to the lymph node, although it is possible that lymphatic-vessel-derived CCR7 ligands are required to promote DC trafficking into the lymph and the lymph nodes.

  • The biophysical environment — including the flow of interstitial fluid, which naturally runs towards lymphatic vessels — probably positively influences the movement of DCs towards lymphatic vessels by operating together with DC-mediated proteolysis. Interstitial flow might also affect the signalling induced by chemokines.

  • The migration of different populations of DCs to lymph nodes utilizes shared and unique molecules that support trafficking. Most data are derived from studying the migration of skin DCs, and it remains to be determined whether these findings are applicable to DCs in other tissues.

  • Several assays to study DC migration have been developed, and each has particular advantages and disadvantages. Assays that directly analyse DCs while they are in transit through lymphatic vessels are expected to yield the most ground-breaking findings in the future.

  • Manipulating DC migration to influence immune responses in clinical settings holds promise, but several areas require further investigation for this hope to become a reality.

Abstract

Antigen-presenting dendritic cells often acquire foreign antigens in peripheral tissues such as the skin. Optimal encounter with naive T cells for the presentation of these antigens requires that the dendritic cells migrate to draining lymph nodes through lymphatic vessels. In this article, we review important aspects of what is known about dendritic-cell trafficking into and through lymphatic vessels to lymph nodes. We present these findings in the context of information about lymphatic-vessel biology. Gaining a better understanding of the crosstalk between dendritic cells and lymphatic vessels during the migration of dendritic cells to lymph nodes is essential for future advances in manipulating dendritic-cell migration as a means to fine-tune immune responses in clinical settings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lymphatic-vessel organization in the skin.
Figure 2: Terminal afferent lymphatic vessels in lymph nodes.
Figure 3: Tracing dendritic-cell migration to lymph nodes.
Figure 4: Expression of CC-chemokine-receptor-7 ligands and fate of dendritic cells in wild-type and plt mice.
Figure 5: Potential mechanism of flow-enhanced autologous chemotaxis or secreted matrix-metalloproteinase redistribution.

Similar content being viewed by others

References

  1. Lanzavecchia, A. & Sallusto, F. The instructive role of dendritic cells on T cell responses: lineages, plasticity and kinetics. Curr. Opin. Immunol. 13, 291–298 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Trombetta, E. S. & Mellman, I. Cell biology of antigen processing in vitro and in vivo. Annu. Rev. Immunol. 23, 975–1028 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Mellman, I. & Steinman, R. M. Dendritic cells: specialized and regulated antigen processing machines. Cell 106, 255–258 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Schmid-Schonbein, G. W. Microlymphatics and lymph flow. Physiol. Rev. 70, 987–1028 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Swartz, M. A. The physiology of the lymphatic system. Adv. Drug Deliv. Rev. 50, 3–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Castenholz, A. Functional microanatomy of initial lymphatics with special consideration of the extracellular matrix. Lymphology 31, 101–118 (1998).

    CAS  PubMed  Google Scholar 

  7. Leak, L. V. The structure of lymphatic capillaries in lymph formation. Fed. Proc. 35, 1863–1871 (1976).

    CAS  PubMed  Google Scholar 

  8. Leak, L. V. Studies on the permeability of lymphatic capillaries. J. Cell Biol. 50, 300–323 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jager, K. & Bollinger, A. Fluorescence microlymphography, technique and morphology. in The Initial Lymphatics (eds Bollinger, A., Partsch, H. & Wolfe, J. H. N.) 99–105 (Thieme, Stuttgart, 1985).

    Google Scholar 

  10. Skalak, T. C., Schmid-Schonbein, G. W. & Zweifach, B. W. New morphological evidence for a mechanism of lymph formation in skeletal muscle. Microvasc. Res. 28, 95–112 (1984).

    Article  CAS  PubMed  Google Scholar 

  11. Schmid-Schonbein, G. W. Mechanisms causing initial lymphatics to expand and compress to promote lymph flow. Arch. Histol. Cytol. 53, 107–114 (1990).

    Article  PubMed  Google Scholar 

  12. Bridenbaugh, E. A., Gashev, A. A. & Zawieja, D. C. Lymphatic muscle: a review of contractile function. Lymphat. Res. Biol. 1, 147–158 (2003).

    Article  PubMed  Google Scholar 

  13. von der Weid, P. Y. Lymphatic vessel pumping and inflammation — the role of spontaneous constrictions and underlying electrical pacemaker potentials. Aliment. Pharmacol. Ther. 15, 1115–1129 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Smith, J. B., McIntosh, G. H. & Morris, B. The migration of cells through chronically inflamed tissues. J. Pathol. 100, 21–29 (1970).

    Article  CAS  PubMed  Google Scholar 

  15. Silberberg-Sinakin, I., Thorbecke, G. J., Baer, R. L., Rosenthal, S. A. & Berezowsky, V. Antigen-bearing Langerhans cells in skin, dermal lymphatics and in lymph nodes. Cell. Immunol. 25, 137–151 (1976).

    Article  CAS  PubMed  Google Scholar 

  16. Larsen, C. P. et al. Migration and maturation of Langerhans cells in skin transplants and explants. J. Exp. Med. 172, 1483–1493 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Lukas, M. et al. Human cutaneous dendritic cells migrate through dermal lymphatic vessels in a skin organ culture model. J. Invest. Dermatol. 106, 1293–1299 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Stoitzner, P., Pfaller, K., Stössel, H. & Romani, N. A close-up view of migrating Langerhans cells in the skin. J. Invest. Dermatol. 118, 117–125 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Ikomi, F., Hunt, J., Hanna, G. & Schmid-Schonbein, G. W. Interstitial fluid, plasma protein, colloid, and leukocyte uptake into initial lymphatics. J. Appl. Physiol. 81, 2060–2067 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Xu, H. et al. The role of ICAM-1 molecule in the migration of Langerhans cells in the skin and regional lymph node. Eur. J. Immunol. 31, 3085–3093 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ma, J., Wang, J. H., Guo, Y. J., Sy, M. S. & Bigby, M. In vivo treatment with anti-ICAM-1 and anti-LFA-1 antibodies inhibits contact sensitization-induced migration of epidermal Langerhans cells to regional lymph nodes. Cell. Immunol. 158, 389–399 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Cera, M. R. et al. Increased DC trafficking to lymph nodes and contact hypersensitivity in junctional adhesion molecule-A-deficient mice. J. Clin. Invest. 114, 729–738 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mandell, K. J., Babbin, B. A., Nusrat, A. & Parkos, C. A. Junctional adhesion molecule 1 regulates epithelial cell morphology through effects on β1 integrins and Rap1 activity. J. Biol. Chem. 280, 11665–11674 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Sixt, M. et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22, 19–29 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Jawdat, D. M., Albert, E. J., Rowden, G., Haidl, I. D. & Marshall, J. S. IgE-mediated mast cell activation induces Langerhans cell migration in vivo. J. Immunol. 173, 5275–5282 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Robbiani, D. F. et al. The leukotriene C4 transporter MRP1 regulates CCL19 (MIP-3β, ELC)-dependent mobilization of dendritic cells to lymph nodes. Cell 103, 757–768 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Angeli, V. et al. Dyslipidemia associated with atherosclerotic disease systemically alters dendritic cell mobilization. Immunity 21, 561–574 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Mempel, T. R., Scimone, M. L., Mora, J. R. & von Andrian, U. H. In vivo imaging of leukocyte trafficking in blood vessels and tissues. Curr. Opin. Immunol. 16, 406–417 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Lindquist, R. L. et al. Visualizing dendritic cell networks in vivo. Nature Immunol. 5, 1243–1250 (2004).

    Article  CAS  Google Scholar 

  30. Sainte-Marie, G., Peng, F. S. & Belisle, C. Overall architecture and pattern of lymph flow in the rat lymph node. Am. J. Anat. 164, 275–309 (1982).

    Article  CAS  PubMed  Google Scholar 

  31. Belz, G. T. & Heath, T. J. Lymph pathways of the medial retropharyngeal lymph node in dogs. J. Anat. 186, 517–526 (1995).

    PubMed  PubMed Central  Google Scholar 

  32. Heath, T. & Brandon, R. Lymphatic and blood vessels of the popliteal node in sheep. Anat. Rec. 207, 461–472 (1983).

    Article  CAS  PubMed  Google Scholar 

  33. Heath, T. J., Kerlin, R. L. & Spalding, H. J. Afferent pathways of lymph flow within the popliteal node in sheep. J. Anat. 149, 65–75 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Nikles, S. A. & Heath, T. J. Pathways of lymph flow through intestinal lymph nodes in the horse. Anat. Rec. 232, 126–132 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Smith, J. B., McIntosh, G. H. & Morris, B. The traffic of cells through tissues: a study of peripheral lymph in sheep. J. Anat. 107, 87–100 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kelly, R. H., Balfour, B. M., Armstrong, J. A. & Griffiths, S. Functional anatomy of lymph nodes. II. Peripheral lymph-borne mononuclear cells. Anat. Rec. 190, 5–21 (1978).

    Article  CAS  PubMed  Google Scholar 

  37. Drexhage, H. A., Mullink, H., de Groot, J., Clarke, J. & Balfour, B. M. A study of cells present in peripheral lymph of pigs with special reference to a type of cell resembling the Langerhans cell. Cell Tissue Res. 202, 407–430 (1979).

    Article  CAS  PubMed  Google Scholar 

  38. Pugh, C. W., MacPherson, G. G. & Steer, H. W. Characterization of nonlymphoid cells derived from rat peripheral lymph. J. Exp. Med. 157, 1758–1779 (1983). This classic paper described the presence and phenotype of DCs recovered from pseudo-afferent lymph. Approaches to examine DCs directly from lymph are still rare, so this paper, together with its direct descendants from G. G. MacPherson's research group, remains an important authority in the field.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Spry, C. J., Pflug, A. J., Janossy, G. & Humphrey, J. H. Large mononuclear (veiled) cells like 'Ia-like' membrane antigens in human afferent lymph. Clin. Exp. Immunol. 39, 750–755 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mayrhofer, G., Holt, P. G. & Papadimitriou, J. M. Functional characteristics of the veiled cells in afferent lymph from the rat intestine. Immunology 58, 379–387 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mackay, C. R., Marston, W. L. & Dudler, L. Naive and memory T cells show distinct pathways of lymphocyte recirculation. J. Exp. Med. 171, 801–817 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Brand, C. U. et al. Characterization of human skin-derived CD1a-positive lymph cells. Arch. Dermatol. Res. 291, 65–72 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Pedersen, N. C. & Morris, B. The rate of formation and the composition of lymph from primary and secondary renal allografts. Transplantation 17, 48–56 (1974).

    Article  CAS  PubMed  Google Scholar 

  44. Förster, R. et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23–33 (1999). This study provided the revelation that CCR7 is an important mediator of DC migration in vivo . It followed references 50–53, which simultaneously reported that CCR7 is the main chemokine receptor that is upregulated by maturing human DCs in vitro.

    Article  PubMed  Google Scholar 

  45. Ohl, L. et al. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 21, 279–288 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Martín-Fontecha, A. et al. Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J. Exp. Med. 198, 615–621 (2003). This paper showed that CCR7-deficient DCs fail to migrate to normal lymph nodes on a host background that has CCR7+ lymphocytes. This work was crucial in establishing the important role of CCR7 in directly mediating DC migration to lymph nodes, because other studies that were carried out on the CCR7-deficient background examined DC migration to abnormal lymph nodes that contained few lymphocytes.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Wilson, N. S. & Villadangos, J. A. Lymphoid organ dendritic cells: beyond the Langerhans cells paradigm. Immunol. Cell Biol. 82, 91–98 (2004).

    Article  PubMed  Google Scholar 

  48. Thomas, W. R., Edwards, A. J., Watkins, M. C. & Asherson, G. L. Distribution of immunogenic cells after painting with the contact sensitizers fluorescein isothiocyanate and oxazolone. Different sensitizers form immunogenic complexes with different cell populations. Immunology 39, 21–27 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kripke, M. L., Munn, C. G., Jeevan, A., Tang, J. M. & Bucana, C. Evidence that cutaneous antigen-presenting cells migrate to regional lymph nodes during contact sensitization. J. Immunol. 145, 2833–2838 (1990).

    CAS  PubMed  Google Scholar 

  50. Dieu, M. C. et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J. Exp. Med. 188, 373–386 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sozzani, S. et al. Differential regulation of chemokine receptors during dendritic cell maturation: a model for their trafficking properties. J. Immunol. 161, 1083–1086 (1998).

    CAS  PubMed  Google Scholar 

  52. Yanagihara, S., Komura, E., Nagafune, J., Watarai, H. & Yamaguchi, Y. EBI1/CCR7 is a new member of dendritic cell chemokine receptor that is up-regulated upon maturation. J. Immunol. 161, 3096–3102 (1998).

    CAS  PubMed  Google Scholar 

  53. Sallusto, F. et al. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur. J. Immunol. 28, 2760–2769 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Scandella, E., Men, Y., Gillessen, S., Förster, R. & Groettrup, M. Prostaglandin E2 is a key factor for CCR7 surface expression and migration of monocyte-derived dendritic cells. Blood 100, 1354–1361 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Kabashima, K. et al. Prostaglandin E2– EP4 signaling initiates skin immune responses by promoting migration and maturation of Langerhans cells. Nature Med. 9, 744–749 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Partida-Sanchez, S. et al. Regulation of dendritic cell trafficking by the ADP-ribosyl cyclase CD38: impact on the development of humoral immunity. Immunity 20, 279–291 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Höpken, U. E. & Lipp, M. All roads lead to Rome: triggering dendritic cell migration. Immunity 20, 244–246 (2004).

    Article  PubMed  Google Scholar 

  58. Randolph, G. J., Sanchez-Schmitz, G. & Angeli, V. Factors and signals that govern the migration of dendritic cells via lymphatics: recent advances. Springer Semin. Immunopathol. 26, 273–287 (2005).

    Article  PubMed  Google Scholar 

  59. Scandella, E. et al. CCL19/CCL21-triggered signal transduction and migration of dendritic cells requires prostaglandin E2 . Blood 103, 1595–1601 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Verbovetski, I. et al. Opsonization of apoptotic cells by autologous iC3b facilitates clearance by immature dendritic cells, down-regulates DR and CD86, and up-regulates CC chemokine receptor 7. J. Exp. Med. 196, 1553–1561 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bouchon, A., Hernandez-Munain, C., Cella, M. & Colonna, M. A DAP12-mediated pathway regulates expression of CC chemokine receptor 7 and maturation of human dendritic cells. J. Exp. Med. 194, 1111–1122 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bakker, A. B. et al. DAP12-deficient mice fail to develop autoimmunity due to impaired antigen priming. Immunity 13, 345–353 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Tomasello, E. et al. Combined natural killer cell and dendritic cell functional deficiency in KARAP/DAP12 loss-of-function mutant mice. Immunity 13, 355–364 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Kerksiek, K. M., Niedergang, F., Chavrier, P., Busch, D. H. & Brocker, T. Selective Rac1 inhibition in dendritic cells diminishes apoptotic cell uptake and cross-presentation in vivo. Blood 105, 742–749 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Benvenuti, F. et al. Requirement of Rac1 and Rac2 expression by mature dendritic cells for T cell priming. Science 305, 1150–1153 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Price, A. A., Cumberbatch, M., Kimber, I. & Ager, A. α6 Integrins are required for Langerhans cell migration from the epidermis. J. Exp. Med. 186, 1725–1735 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wittchen, E. S., van Buul, J. D., Burridge, K. & Worthylake, R. A. Trading spaces: Rap, Rac, and Rho as architects of transendothelial migration. Curr. Opin. Hematol. 12, 14–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Katagiri, K., Maeda, A., Shimonaka, M. & Kinashi, T. RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1. Nature Immunol. 4, 741–748 (2003).

    Article  CAS  Google Scholar 

  69. Gunn, M. D. et al. A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc. Natl Acad. Sci. USA 95, 258–263 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen, S. C. et al. Ectopic expression of the murine chemokines CCL21a and CCL21b induces the formation of lymph node-like structures in pancreas, but not skin, of transgenic mice. J. Immunol. 168, 1001–1008 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Vassileva, G. et al. The reduced expression of 6Ckine in the plt mouse results from the deletion of one of two 6Ckine genes. J. Exp. Med. 190, 1183–1188 (1999). This paper uncovered that there are two distinct genes that encode CCL21 and that these are expressed in different anatomical locations. It helped to correct the scientific literature and uncovered unexpected complexities that need to be taken into account regarding how and where CCL21 might function to regulate DC migration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gunn, M. D. et al. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J. Exp. Med. 189, 451–460 (1999). This paper revealed that DCs migrate poorly to lymph nodes in plt mice. However, it erroneously reported that these mice are devoid of functional CCL21 but not CCL19. Corrections were made in references 71, 73 and 74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Luther, S. A., Tang, H. L., Hyman, P. L., Farr, A. G. & Cyster, J. G. Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proc. Natl Acad. Sci. USA 97, 12694–12699 (2000). This paper was the first to reveal that plt mice are devoid of functional CCL19. Together with reference 74, it shows that plt mice are deficient in functional CCL19 but that they do not lack CCL21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nakano, H. & Gunn, M. D. Gene duplications at the chemokine locus on mouse chromosome 4: multiple strain-specific haplotypes and the deletion of secondary lymphoid-organ chemokine and EBI-1 ligand chemokine genes in the plt mutation. J. Immunol. 166, 361–369 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Yoshino, M. et al. Distinct antigen trafficking from skin in the steady and active states. Int. Immunol. 15, 773–779 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Qu, C. et al. Role of CCR8 and other chemokine pathways in the migration of monocyte-derived dendritic cells to lymph nodes. J. Exp. Med. 200, 1231–1241 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Saeki, H., Moore, A. M., Brown, M. J. & Hwang, S. T. Secondary lymphoid-tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes. J. Immunol. 162, 2472–2475 (1999).

    CAS  PubMed  Google Scholar 

  78. Engeman, T. M., Gorbachev, A. V., Gladue, R. P., Heeger, P. S. & Fairchild, R. L. Inhibition of functional T cell priming and contact hypersensitivity responses by treatment with anti-secondary lymphoid chemokine antibody during hapten sensitization. J. Immunol. 164, 5207–5214 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Pilkington, K. R., Clark-Lewis, I. & McColl, S. R. Inhibition of generation of cytotoxic T lymphocyte activity by a CCL19/macrophage inflammatory protein (MIP)-3β antagonist. J. Biol. Chem. 279, 40276–40282 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Yanagawa, Y. & Onoe, K. CCL19 induces rapid dendritic extension of murine dendritic cells. Blood 100, 1948–1956 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Junt, T. et al. Impact of CCR7 on priming and distribution of antiviral effector and memory CTL. J. Immunol. 173, 6684–6693 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Mori, S. et al. Mice lacking expression of the chemokines CCL21-Ser and CCL19 (plt mice) demonstrate delayed but enhanced T cell immune responses. J. Exp. Med. 193, 207–218 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gunn, M. D. Chemokine mediated control of dendritic cell migration and function. Semin. Immunol. 15, 271–276 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Kuroshima, S. et al. Expression of Cys–Cys chemokine ligand 21 on human gingival lymphatic vessels. Tissue Cell 36, 121–127 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Sallusto, F. et al. Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur. J. Immunol. 29, 1617–1625 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Ngo, V. N., Tang, H. L. & Cyster, J. G. Epstein–Barr virus-induced molecule 1 ligand chemokine is expressed by dendritic cells in lymphoid tissues and strongly attracts naive T cells and activated B cells. J. Exp. Med. 188, 181–191 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Radstake, T. R. et al. Increased expression of CCL18, CCL19, and CCL17 by dendritic cells from patients with rheumatoid arthritis, and regulation by Fcγ receptors. Ann. Rheum. Dis. 64, 359–367 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Boardman, K. C. & Swartz, M. A. Interstitial flow as a guide for lymphangiogenesis. Circ. Res. 92, 801–808 (2003). This paper showed how interstitial flow markedly affects migratory-cell movement and guidance in vivo.

    Article  CAS  PubMed  Google Scholar 

  89. Swartz, M. A. Signaling in morphogenesis: transport cues in morphogenesis. Curr. Opin. Biotechnol. 14, 547–550 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Chary, S. R. & Jain, R. K. Direct measurement of interstitial convection and diffusion of albumin in normal and neoplastic tissues by fluorescence photobleaching. Proc. Natl Acad. Sci. USA 86, 5385–5389 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ratzinger, G. et al. Matrix metalloproteinases 9 and 2 are necessary for the migration of Langerhans cells and dermal dendritic cells from human and murine skin. J. Immunol. 168, 4361–4371 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Colonna, M., Trinchieri, G. & Liu, Y. J. Plasmacytoid dendritic cells in immunity. Nature Immunol. 5, 1219–1226 (2004).

    Article  CAS  Google Scholar 

  93. Kohrgruber, N. et al. Plasmacytoid dendritic cell recruitment by immobilized CXCR3 ligands. J. Immunol. 173, 6592–6602 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Zabel, B. A., Silverio, A. M. & Butcher, E. C. Chemokine-like receptor 1 expression and chemerin-directed chemotaxis distinguish plasmacytoid from myeloid dendritic cells in human blood. J. Immunol. 174, 244–251 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Vermi, W. et al. Role of ChemR23 in directing the migration of myeloid and plasmacytoid dendritic cells to lymphoid organs and inflamed skin. J. Exp. Med. 201, 509–515 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Steinman, R. M. The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 9, 271–296 (1991).

    Article  CAS  PubMed  Google Scholar 

  97. Inaba, K. et al. Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells. J. Exp. Med. 188, 2163–2173 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kamath, A. T., Henri, S., Battye, F., Tough, D. F. & Shortman, K. Developmental kinetics and lifespan of dendritic cells in mouse lymphoid organs. Blood 100, 1734–1741 (2002).

    CAS  PubMed  Google Scholar 

  99. Hall, J. G. & Morris, B. The output of cells in lymph from the popliteal node of sheep. Q. J. Exp. Physiol. Cogn. Med. Sci. 47, 360–369 (1962).

    CAS  PubMed  Google Scholar 

  100. Kupiec-Weglinski, J. W., Austyn, J. M. & Morris, P. J. Migration patterns of dendritic cells in the mouse. Traffic from the blood, and T cell-dependent and -independent entry to lymphoid tissues. J. Exp. Med. 167, 632–645 (1988).

    Article  CAS  PubMed  Google Scholar 

  101. Bell, E. B. Antigen-laden cells in thoracic duct lymph. Implications for adoptive transfer experiments. Immunology 38, 797–808 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Anderson, A. O., Warren, J. T. & Gasser, D. L. Presence of lymphoid dendritic cells in thoracic duct lymph from Lewis rats. Transplant. Proc. 13, 1460–1468 (1981).

    CAS  PubMed  Google Scholar 

  103. De Martini, J. C., Fiscus, S. A. & Pearson, L. D. Macrophages in efferent lymph of sheep and their role in lectin-induced lymphocyte blastogenesis. Int. Arch. Allergy Appl. Immunol. 72, 110–115 (1983).

    Article  CAS  PubMed  Google Scholar 

  104. Dandie, G. W., Watkins, F. Y., Ragg, S. J., Holloway, P. E. & Muller, H. K. The migration of Langerhans' cells into and out of lymph nodes draining normal, carcinogen and antigen-treated sheep skin. Immunol. Cell Biol. 72, 79–86 (1994).

    Article  CAS  PubMed  Google Scholar 

  105. Hall, J. G. Studies on the adjuvant action of beryllium. I. Effects on individual lymph nodes. Immunology 53, 105–113 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Catalina, M. D. et al. The route of antigen entry determines the requirement for L-selectin during immune responses. J. Exp. Med. 184, 2341–2351 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chackerian, A. A., Alt, J. M., Perera, T. V., Dascher, C. C. & Behar, S. M. Dissemination of Mycobacterium tuberculosis is influenced by host factors and precedes the initiation of T-cell immunity. Infect. Immun. 70, 4501–4509 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Vazquez-Torres, A. et al. Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature 401, 804–808 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Figdor, C. G., de Vries, I. J., Lesterhuis, W. J. & Melief, C. J. Dendritic cell immunotherapy: mapping the way. Nature Med. 10, 475–480 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Adema, G. J., de Vries, I. J., Punt, C. J. & Figdor, C. G. Migration of dendritic cell based cancer vaccines: in vivo veritas? Curr. Opin. Immunol. 17, 170–174 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Steinman, R. M. et al. Dendritic cell function in vivo during the steady state: a role in peripheral tolerance. Ann. NY Acad. Sci. 987, 15–25 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Liu, L., Zhang, M., Jenkins, C. & MacPherson, G. G. Dendritic cell heterogeneity in vivo: two functionally different dendritic cell populations in rat intestinal lymph can be distinguished by CD4 expression. J. Immunol. 161, 1146–1155 (1998).

    CAS  PubMed  Google Scholar 

  113. Ryan, T. J. Structure and function of lymphatics. J. Invest. Dermatol. 93, 18S–24S (1989).

    Article  CAS  PubMed  Google Scholar 

  114. Saiki, T., Ezaki, T., Ogawa, M. & Matsuno, K. Trafficking of host- and donor-derived dendritic cells in rat cardiac transplantation: allosensitization in the spleen and hepatic nodes. Transplantation 71, 1806–1815 (2001). This paper uncovered a novel pathway of DC migration out of tissues: that is, re-emergence into the blood, rather than trafficking to draining lymph nodes through lymphatic vessels.

    Article  CAS  PubMed  Google Scholar 

  115. Llodra, J. et al. Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques. Proc. Natl Acad. Sci. USA 101, 11779–11784 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Weninger, W. et al. Naive T cell recruitment to nonlymphoid tissues: a role for endothelium-expressed CC chemokine ligand 21 in autoimmune disease and lymphoid neogenesis. J. Immunol. 170, 4638–4648 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Ruedl, C., Koebel, P., Bachmann, M., Hess, M. & Karjalainen, K. Anatomical origin of dendritic cells determines their life span in peripheral lymph nodes. J. Immunol. 165, 4910–4916 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Randolph, G. J., Inaba, K., Robbiani, D. F., Steinman, R. M. & Muller, W. A. Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity 11, 753–761 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. Gretz, J. E., Anderson, A. O. & Shaw, S. Cords, channels, corridors and conduits: critical architectural elements facilitating cell interactions in the lymph node cortex. Immunol. Rev. 156, 11–24 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Itano, A. A. et al. Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. Immunity 19, 47–57 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Pope, M., Betjes, M. G., Hirmand, H., Hoffman, L. & Steinman, R. M. Both dendritic cells and memory T lymphocytes emigrate from organ cultures of human skin and form distinctive dendritic–T-cell conjugates. J. Invest. Dermatol. 104, 11–17 (1995).

    Article  CAS  PubMed  Google Scholar 

  122. Sato, K., Imai, Y. & Irimura, T. Contribution of dermal macrophage trafficking in the sensitization phase of contact hypersensitivity. J. Immunol. 161, 6835–6844 (1998).

    CAS  PubMed  Google Scholar 

  123. Asli, B., Lantz, O., DiSanto, J. P., Saeland, S. & Geissmann, F. Roles of lymphoid cells in the differentiation of Langerhans dendritic cells in mice. Immunobiology 209, 209–221 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Kimber, I. & Cumberbatch, M. Stimulation of Langerhans cell migration by tumor necrosis factor α (TNF-α). J. Invest. Dermatol. 99, 48S–50S (1992).

    Article  CAS  PubMed  Google Scholar 

  125. Roake, J. A. et al. Dendritic cell loss from nonlymphoid tissues after systemic administration of lipopolysaccharide, tumor necrosis factor, and interleukin 1. J. Exp. Med. 181, 2237–2247 (1995).

    Article  CAS  PubMed  Google Scholar 

  126. Cumberbatch, M., Griffiths, C. E., Tucker, S. C., Dearman, R. J. & Kimber, I. Tumour necrosis factor-α induces Langerhans cell migration in humans. Br. J. Dermatol. 141, 192–200 (1999).

    Article  CAS  PubMed  Google Scholar 

  127. Rotta, G. et al. Lipopolysaccharide or whole bacteria block the conversion of inflammatory monocytes into dendritic cells in vivo. J. Exp. Med. 198, 1253–1263 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Vermaelen, K. Y., Carro-Muino, I., Lambrecht, B. N. & Pauwels, R. A. Specific migratory dendritic cells rapidly transport antigen from the airways to the thoracic lymph nodes. J. Exp. Med. 193, 51–60 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Garg, S. et al. Genetic tagging shows increased frequency and longevity of antigen-presenting, skin-derived dendritic cells in vivo. Nature Immunol. 4, 907–912 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Fleury for producing figure 5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwendalyn J. Randolph.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

CCL19

CCL21

CCR7

ICAM1

JAM1

LFA1

MMP2

MMP9

Glossary

TWO-PHOTON MICROSCOPY

A fluorescence-imaging technique that takes advantage of the fact that fluorescent molecules can absorb two photons simultaneously during excitation, before they emit light. This technique greatly reduces photodamage of living specimens, improves depth of tissue penetration, allows distinct separation between excitation and emission wavelengths, and confines excitation to a discrete focal point.

CONTACT ELICITATION

The inflammatory immune reactions that occur at the site of exposure after contact with a sensitizing antigen. These reactions occur after second and subsequent exposures to a particular sensitizing antigen, and they involve the recruitment and responses of effector T cells.

FLUORESCEIN-ISOTHIOCYANATE PAINTING ASSAY

(FITC painting). An experimental assay of contact sensitization in mice. In this assay, the contact-sensitizing substances are dibutyl phthalate and the fluorochrome FITC, which also functions as a migration tracer. The application of this mixture to the skin, in an equal volume of acetone, is often called painting.

CONTACT SENSITIZATION

The initial reaction that occurs after the first exposure to a 'sensitizer' hapten or antigen. This step requires dendritic-cell migration to lymph nodes to prime contact-antigen-specific T cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Randolph, G., Angeli, V. & Swartz, M. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol 5, 617–628 (2005). https://doi.org/10.1038/nri1670

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1670

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing