Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of junctional adhesion molecules in vascular inflammation

Key Points

  • Junctional adhesion molecules (JAMs) are expressed by leukocytes, platelets, endothelial and epithelial cells. JAMs are important in the control of vascular permeability and leukocyte transmigration across endothelial-cell surfaces.

  • JAMs engage in homophilic interactions and various heterophilic interactions with the leukocyte integrins lymphocyte function-associated antigen 1 (LFA1), very late antigen 4 (VLA4) and MAC1.

  • JAMs are upregulated under inflammatory, atherosclerotic or ischaemic conditions. JAMs are redistributed from intercellular junctions to the cell surface after inflammatory stimulation.

  • Both endothelial-cell and leukocyte JAM-A contribute in a molecular 'zipper' that controls transendothelial diapedesis, whereas JAM-C supports leukocyte adhesion on platelets and subsequent transendothelial migration. Both JAM-A and JAM-C promote leukocyte recruitment on activated endothelium under inflammatory conditions.

  • Studies using genetically modified mice have shown important roles for JAMs in the regulation of leukocyte recruitment to sites of inflammation, ischaemia–reperfusion injury, atherogenesis, and in neointima formation.

  • JAMs are involved in growth-factor-mediated angiogenesis by association with αvβ3-integrin and subsequent signalling steps.

Abstract

Junctional adhesion molecules (JAMs) of the immunoglobulin superfamily are important in the control of vascular permeability and leukocyte transmigration across endothelial-cell surfaces, by engaging in homophilic, heterophilic and lateral interactions. Through their localization on the endothelial-cell surface and expression by platelets, JAMs contribute to adhesive interactions with circulating leukocytes and platelets. Antibody-blocking studies and studies using genetically modified mice have implicated these functions of JAMs in the regulation of leukocyte recruitment to sites of inflammation and ischaemia–reperfusion injury, in growth-factor-mediated angiogenesis, atherogenesis and neointima formation. The comparison of different JAM-family members and animal models, however, shows that the picture remains rather complex. This Review summarizes recent progress and future directions in understanding the role of JAMs as 'gate keepers' in inflammation and vascular pathology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural features of the JAM-family members and a molecular model for JAM homophilic adhesion.
Figure 2: Cellular expression and extracellular ligands of JAMs.
Figure 3: Molecular models of JAM-A and JAM-C in leukocyte adhesion and transmigration.
Figure 4: JAMs in angiogenesis, ischaemia–reperfusion injury, atherogenesis and arterial injury.

Similar content being viewed by others

References

  1. Muller, W. A. Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol. 24, 327–334 (2003).

    CAS  PubMed  Google Scholar 

  2. Imhof, B. A. & Aurrand-Lions, M. Adhesion mechanisms regulating the migration of monocytes. Nature Rev. Immunol. 4, 432–444 (2004).

    Article  CAS  Google Scholar 

  3. Weber, C. Novel mechanistic concepts for the control of leukocyte transmigration: specialization of integrins, chemokines, and junctional molecules. J. Mol. Med. 81, 4–19 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Bazzoni, G. The JAM family of junctional adhesion molecules. Curr. Opin. Cell Biol. 15, 525–530 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Martin-Padura, I. et al. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J. Cell Biol. 142, 117–127 (1998). This paper reports the identification of JAM-A at intercellular junctions and its involvement in mononuclear transmigration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Williams, L. A., Martin-Padura, I., Dejana, E., Hogg, N. & Simmons, D. L. Identification and characterisation of human junctional adhesion molecule (JAM). Mol. Immunol. 36, 1175–1188 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Palmeri, D., van Zante, A., Huang, C. C., Hemmerich, S. & Rosen, S. D. Vascular endothelial junction-associated molecule, a novel member of the immunoglobulin superfamily, is localized to intercellular boundaries of endothelial cells. J. Biol. Chem. 275, 19139–19145 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Cunningham, S. A. et al. A novel protein with homology to the junctional adhesion molecule. Characterization of leukocyte interactions. J. Biol. Chem. 275, 34750–34756 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Aurrand-Lions, M., Duncan, L., Ballestrem, C. & Imhof, B. A. JAM-2, a novel immunoglobulin superfamily molecule, expressed by endothelial and lymphatic cells. J. Biol. Chem. 276, 2733–2741 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Arrate, M. P., Rodriguez, J. M., Tran, T. M., Brock, T. A. & Cunningham, S. A. Cloning of human junctional adhesion molecule 3 (JAM3) and its identification as the JAM2 counter-receptor. J. Biol. Chem. 276, 45826–45832 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Liang, T. W. et al. Vascular endothelial-junctional adhesion molecule (VE-JAM)/JAM 2 interacts with T, NK, and dendritic cells through JAM3. J. Immunol. 168, 1618–1626 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Hirabayashi, S. et al. JAM4, a junctional cell adhesion molecule interacting with a tight junction protein, MAGI-1. Mol. Cell. Biol. 23, 4267–4282 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moog-Lutz, C. et al. JAML, a novel protein with characteristics of a junctional adhesion molecule, is induced during differentiation of myeloid leukemia cells. Blood 102, 3371–3378 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Kostrewa, D. et al. X-ray structure of junctional adhesion molecule: structural basis for homophilic adhesion via a novel dimerization motif. Embo J. 20, 4391–4398 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Prota, A. E. et al. Crystal structure of human junctional adhesion molecule 1: implications for reovirus binding. Proc. Natl Acad. Sci. USA 100, 5366–5371 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, Y. et al. Human junction adhesion molecule regulates tight junction resealing in epithelia. J. Cell Sci. 113 2363–2374 (2000).

    CAS  PubMed  Google Scholar 

  17. Johnson-Leger, C. A., Aurrand-Lions, M., Beltraminelli, N., Fasel, N. & Imhof, B. A. Junctional adhesion molecule-2 (JAM-2) promotes lymphocyte transendothelial migration. Blood 100, 2479–2486 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Santoso, S. et al. The junctional adhesion molecule 3 (JAM-3) on human platelets is a counterreceptor for the leukocyte integrin Mac-1. J. Exp. Med. 196, 679–691 (2002). In this paper the leukocyte integrin MAC1 is reported to act as a receptor for JAM-C, which supports a crucial role for JAMs in platelet-mediated leukocyte recruitment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Aurrand-Lions, M. et al. Junctional adhesion molecule-C regulates the early influx of leukocytes into tissues during inflammation. J. Immunol. 174, 6406–6415 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Bazzoni, G. et al. Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. J. Biol. Chem. 275, 20520–20526 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Ebnet, K., Schulz, C. U., Meyer Zu Brickwedde, M. K., Pendl, G. G. & Vestweber, D. Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J. Biol. Chem. 275, 27979–27988 (2000).

    CAS  PubMed  Google Scholar 

  22. Ebnet, K. et al. The cell polarity protein ASIP/PAR-3 directly associates with junctional adhesion molecule (JAM). Embo J. 20, 3738–3748 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zen, K. et al. JAM-C is a component of desmosomes and a ligand for CD11b/CD18-mediated neutrophil transepithelial migration. Mol. Biol. Cell 15, 3926–3937 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ebnet, K. et al. The junctional adhesion molecule (JAM) family members JAM-2 and JAM-3 associate with the cell polarity protein PAR-3: a possible role for JAMs in endothelial cell polarity. J. Cell Sci. 116, 3879–3891 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Mandicourt, G., Iden, S., Ebnet, K., Aurrand-Lions, M. & Imhof, B. A. JAM-C regulates tight junctions and integrin-mediated cell adhesion and migration. J. Biol. Chem. 282, 1830–1837 (2006).

    Article  PubMed  CAS  Google Scholar 

  26. Ozaki, H. et al. Cutting edge: combined treatment of TNF-α and IFN-γ causes redistribution of junctional adhesion molecule in human endothelial cells. J. Immunol. 163, 553–557 (1999).

    CAS  PubMed  Google Scholar 

  27. Ostermann, G., Weber, K. S., Zernecke, A., Schroder, A. & Weber, C. JAM-1 is a ligand of the β2 integrin LFA-1 involved in transendothelial migration of leukocytes. Nature Immunol. 3, 151–158 (2002). This paper identifies JAM-A as a new ligand for the leukocyte integrin LFA1 and provides the first evidence for a functional relevance of heterophilic JAM interactions.

    Article  CAS  Google Scholar 

  28. Shaw, S. K. et al. Reduced expression of junctional adhesion molecule and platelet/endothelial cell adhesion molecule-1 (CD31) at human vascular endothelial junctions by cytokines tumor necrosis factor-α plus interferon-γ does not reduce leukocyte transmigration under flow. Am. J. Pathol. 159, 2281–2291 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Naik, M. U., Mousa, S. A., Parkos, C. A. & Naik, U. P. Signaling through JAM-1 and αvβ3 is required for the angiogenic action of bFGF: dissociation of the JAM-1 and αvβ3 complex. Blood 102, 2108–2114 (2003). This paper provides an important description of the JAM-A–α v β 3 -integrin complex and its role in angiogenesis.

    Article  CAS  PubMed  Google Scholar 

  30. Keiper, T. et al. The role of junctional adhesion molecule-C (JAM-C) in oxidized LDL-mediated leukocyte recruitment. Faseb J. 19, 2078–2080 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Ostermann, G. et al. Involvement of JAM-A in mononuclear cell recruitment on inflamed or atherosclerotic endothelium: inhibition by soluble JAM-A. Arterioscler. Thromb. Vasc. Biol. 25, 729–735 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Slevin, M. et al. Identification of differential protein expression associated with development of unstable human carotid plaques. Am. J. Pathol. 168, 1004–1021 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Babinska, A. et al. The F11 receptor (F11R/JAM-A) in atherothrombosis: overexpression of F11R in atherosclerotic plaques. Thromb. Haemost. 97, 272–281 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Khandoga, A. et al. Junctional adhesion molecule-A deficiency increases hepatic ischemia–reperfusion injury despite reduction of neutrophil transendothelial migration. Blood 106, 725–733 (2005). This paper implicates endothelial-cell JAM-A in the extravasation of neutrophils in vivo using genetically deficient mice in a model of ischaemia–reperfusion injury of the liver.

    Article  CAS  PubMed  Google Scholar 

  35. Aurrand-Lions, M., Johnson-Leger, C., Wong, C., Du Pasquier, L. & Imhof, B. A. Heterogeneity of endothelial junctions is reflected by differential expression and specific subcellular localization of the three JAM family members. Blood 98, 3699–3707 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Naik, U. P., Naik, M. U., Eckfeld, K., Martin-DeLeon, P. & Spychala, J. Characterization and chromosomal localization of JAM-1, a platelet receptor for a stimulatory monoclonal antibody. J. Cell Sci. 114, 539–547 (2001).

    CAS  PubMed  Google Scholar 

  37. Bazzoni, G. et al. Homophilic interaction of junctional adhesion molecule. J. Biol. Chem. 275, 30970–30976 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Babinska, A. et al. F11-receptor (F11R/JAM) mediates platelet adhesion to endothelial cells: role in inflammatory thrombosis. Thromb. Haemost. 88, 843–850 (2002).

    Article  PubMed  Google Scholar 

  39. Santoso, S. et al. The homophilic binding of junctional adhesion molecule-C mediates tumor cell-endothelial cell interactions. J. Biol. Chem. 280, 36326–36333 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Lamagna, C. et al. Dual interaction of JAM-C with JAM-B and αMβ2 integrin: function in junctional complexes and leukocyte adhesion. Mol. Biol. Cell 16, 4992–5003 (2005). This paper provides an interesting analysis of the heterophilic interactions of endothelial-cell JAM-B and JAM-C and its modulation of JAM-C interactions with MAC1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bazzoni, G. Endothelial tight junctions: permeable barriers of the vessel wall. Thromb. Haemost. 95, 36–42 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Mandell, K. J., Babbin, B. A., Nusrat, A. & Parkos, C. A. Junctional adhesion molecule 1 regulates epithelial cell morphology through effects on β1 integrins and Rap1 activity. J. Biol. Chem. 280, 11665–11674 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Mandell, K. J., McCall, I. C. & Parkos, C. A. Involvement of the junctional adhesion molecule-1 (JAM1) homodimer interface in regulation of epithelial barrier function. J. Biol. Chem. 279, 16254–16262 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Orlova, V. V., Economopoulou, M., Lupu, F., Santoso, S. & Chavakis, T. Junctional adhesion molecule-C regulates vascular endothelial permeability by modulating VE-cadherin-mediated cell-cell contacts. J. Exp. Med. 203, 2703–2714 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Del Maschio, A. et al. Leukocyte recruitment in the cerebrospinal fluid of mice with experimental meningitis is inhibited by an antibody to junctional adhesion molecule (JAM). J. Exp. Med. 190, 1351–1356 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lechner, F. et al. Antibodies to the junctional adhesion molecule cause disruption of endothelial cells and do not prevent leukocyte influx into the meninges after viral or bacterial infection. J. Infect. Dis. 182, 978–982 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Zernecke, A. et al. Importance of junctional adhesion molecule-A for neointimal lesion formation and infiltration in atherosclerosis-prone mice. Arterioscler. Thromb. Vasc. Biol. 26, e10–e13 (2006). This paper reports the first evidence for an important role for JAM-A in neointimal lesion formation and monocyte infiltration after arterial denudation injury.

    Article  CAS  PubMed  Google Scholar 

  48. Chavakis, T. et al. The junctional adhesion molecule-C promotes neutrophil transendothelial migration in vitro and in vivo. J. Biol. Chem. 279, 55602–55608 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Fraemohs, L., Koenen, R. R., Ostermann, G., Heinemann, B. & Weber, C. The functional interaction of the β2 integrin lymphocyte function-associated antigen-1 with junctional adhesion molecule-A is mediated by the I domain. J. Immunol. 173, 6259–6264 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Naik, M. U. & Naik, U. P. Junctional adhesion molecule-A-induced endothelial cell migration on vitronectin is integrin αvβ3 specific. J. Cell. Sci. 119, 490–499 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Boettner, B., Govek, E. E., Cross, J. & Van Aelst, L. The junctional multidomain protein AF-6 is a binding partner of the Rap1A GTPase and associates with the actin cytoskeletal regulator profilin. Proc. Natl Acad. Sci. USA 97, 9064–9069 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cunningham, S. A., Rodriguez, J. M., Arrate, M. P., Tran, T. M. & Brock, T. A. JAM2 interacts with α4β1. Facilitation by JAM3. J. Biol. Chem. 277, 27589–27592 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Shaw, S. K. et al. Coordinated redistribution of leukocyte LFA-1 and endothelial cell ICAM-1 accompany neutrophil transmigration. J. Exp. Med. 200, 1571–1580 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Weber, C., Lu, C. F., Casasnovas, J. M. & Springer, T. A. Role of αLβ2 integrin avidity in transendothelial chemotaxis of mononuclear cells. J. Immunol. 159, 3968–3975 (1997).

    CAS  PubMed  Google Scholar 

  55. Springer, T. A. & Wang, J. H. The three-dimensional structure of integrins and their ligands, and conformational regulation of cell adhesion. Adv. Protein Chem. 68, 29–63 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Smith, A. et al. A talin-dependent LFA-1 focal zone is formed by rapidly migrating T lymphocytes. J. Cell Biol. 170, 141–151 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wojcikiewicz, E. P., Azad, H., Koenen, R. R., Moy, V. T. & Weber, C. Homophilic and heterophilic interactions of JAM-A measured using atomic force microscopy. Miami Winter Symp. Short Rep. 18, 31 (2007).

    Google Scholar 

  58. Corada, M. et al. Junctional adhesion molecule-A-deficient polymorphonuclear cells show reduced diapedesis in peritonitis and heart ischemia–reperfusion injury. Proc. Natl Acad. Sci. USA 102, 10634–10639 (2005). This paper describes an interesting role of leukocyte JAM-A in neutrophil polarization and directed migration during inflammatory extravasation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chavakis, T., Preissner, K. T. & Santoso, S. Leukocyte trans-endothelial migration: JAMs add new pieces to the puzzle. Thromb. Haemost. 89, 13–17 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. von Hundelshausen, P. & Weber, C. Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ. Res. 100, 27–40 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Kornecki, E., Walkowiak, B., Naik, U. P. & Ehrlich, Y. H. Activation of human platelets by a stimulatory monoclonal antibody. J. Biol. Chem. 265, 10042–10048 (1990).

    CAS  PubMed  Google Scholar 

  62. Mause, S. F., von Hundelshausen, P., Zernecke, A., Koenen, R. R. & Weber, C. Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium. Arterioscler. Thromb. Vasc. Biol. 25, 1512–1518 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Weber, C. & Springer, T. A. Neutrophil accumulation on activated, surface-adherent platelets in flow is mediated by interaction of Mac-1 with fibrinogen bound to αIIbβ3 and stimulated by platelet-activating factor. J. Clin. Invest. 100, 2085–2093 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cera, M. R. et al. Increased DC trafficking to lymph nodes and contact hypersensitivity in junctional adhesion molecule-A-deficient mice. J. Clin. Invest. 114, 729–738 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cooke, V. G., Naik, M. U. & Naik, U. P. Fibroblast growth factor-2 failed to induce angiogenesis in junctional adhesion molecule-deficient mice. Arterioscler. Thromb. Vasc. Biol. 26, 2005–2011 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Naik, M. U., Vuppalanchi, D. & Naik, U. P. Essential role of junctional adhesion molecule-1 in basic fibroblast growth factor-induced endothelial cell migration. Arterioscler. Thromb. Vasc. Biol. 23, 2165–2171 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Lamagna, C., Hodivala-Dilke, K. M., Imhof, B. A. & Aurrand-Lions, M. Antibody against junctional adhesion molecule-C inhibits angiogenesis and tumor growth. Cancer Res. 65, 5703–5710 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Fuse, C., Ishida, Y., Hikita, T., Asai, T. & Oku, N. Junctional adhesion molecule-C promotes metastatic potential of HT1080 human fibrosarcoma. J. Biol. Chem. 282, 8276–8283 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Martinez-Mier, G., Toledo-Pereyra, L. H. & Ward, P. A. Adhesion molecules in liver ischemia and reperfusion. J. Surg. Res. 94, 185–194 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Weber, C., Schober, A. & Zernecke, A. Chemokines: key regulators of mononuclear cell recruitment in atherosclerotic vascular disease. Arterioscler. Thromb. Vasc. Biol. 24, 1997–2008 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Hansson, G. K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352, 1685–1695 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Pajukanta, P. et al. Familial combined hyperlipidemia is associated with upstream transcription factor 1 (USF1). Nature Genet. 36, 371–376 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Huertas-Vazquez, A. et al. Familial combined hyperlipidemia in Mexicans: association with upstream transcription factor 1 and linkage on chromosome 16q24.1. Arterioscler. Thromb. Vasc. Biol. 25, 1985–1991 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Huo, Y. et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nature Med. 9, 61–67 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. von Hundelshausen, P. et al. RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation 103, 1772–1777 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Nasdala, I. et al. A transmembrane tight junction protein selectively expressed on endothelial cells and platelets. J. Biol. Chem. 277, 16294–16303 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Wegmann, F. et al. ESAM supports neutrophil extravasation, activation of Rho, and VEGF-induced vascular permeability. J. Exp. Med. 203, 1671–1677 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cohen, C. J. et al. The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc. Natl Acad. Sci. USA 98, 15191–15196 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vincent, T., Pettersson, R. F., Crystal, R. G. & Leopold, P. L. Cytokine-mediated downregulation of coxsackievirus-adenovirus receptor in endothelial cells. J. Virol. 78, 8047–8058 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Coyne, C. B., Voelker, T., Pichla, S. L. & Bergelson, J. M. The coxsackievirus and adenovirus receptor interacts with the multi-PDZ domain protein-1 (MUPP1) within the tight junction. J. Biol. Chem. 279, 48079–48084 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Mirza, M. et al. Coxsackievirus and adenovirus receptor (CAR) is expressed in male germ cells and forms a complex with the differentiation factor JAM-C in mouse testis. Exp. Cell Res. 312, 817–830 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank R. R. Koenen for helpful discussions and E. A. Liehn for help with immunofluorescence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Weber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Christian Weber's homepage

Glossary

Adherens junctions

Specialized intercellular junctions of the plasma membrane, in which the cadherin molecules at the surface of adjacent cells interact in a calcium-dependent manner. Actin filaments are linked to these cadherin structures through catenin molecules that are located beneath the junctions.

Tight junctions

A belt-like region of adhesion between adjacent epithelial or endothelial cells that regulates paracellular flux. Tight-junction proteins include the integral membrane proteins occludin and claudin, in association with cytoplasmic zonula occludins proteins.

High endothelial venule

A specialized venule that occurs in secondary lymphoid organs, except the spleen. HEVs allow continuous transmigration of lymphocytes as a consequence of the constitutive expression of adhesion molecules and chemokines at their luminal surface.

Desmosome

An adhesive junction that connects epithelial cells in stratified squamous tissues. These junctions are composed of multiple protein subunits and are the points where keratin filaments are inserted into the plasma membrane.

Haptotactic gradient

A substrate-bound gradient that promotes directed migration of adherent cells.

Atherosclerotic plaque

An atherosclerotic lesion consisting of a fibrotic cap surrounding a lipid-rich core. The lesion is the site of inflammation, lipid accumulation and cell death. It is also known as an atheroma.

Ischaemia–reperfusion injury

An injury in which the tissue first suffers from hypoxia as a result of severely decreased, or completely arrested, blood flow. Restoration of normal blood flow then triggers inflammation, which exacerbates the tissue damage.

Surface plasmon resonance

The detection of alterations in plasmon waves generated at a metal–liquid interface. Changes in surface plasmon resonance are a function of the mass of molecules bound to the interface, so this technique allows sensitive detection of ligand binding in real time without requiring the chemical modification of ligands to enable their detection.

Vascular endothelial cadherin

An endothelial-cell-specific cadherin (adhesive protein) that is present in adherens junctions, which are located between endothelial cells.

Pseudopod

A temporary projection of the cytoplasm of certain cells, such as neutrophils, or of certain unicellular organisms, especially amoebae, that functions in locomotion.

Uropod

A slender protrusion that forms at the rear end of migrating leukocytes.

Neointima

The innermost layer of an artery, which is covered by a monolayer of endothelium, is termed the intima. Atherosclerotic plaques form in the intima. A neointima forms after arterial denudation injury comprising a new layer of endothelial cells on the intimal surface.

Atherothrombosis

Following the rupture of unstable atherosclerotic plaques, thrombogenic material becomes exposed or released to mediate thrombus formation and eventually occlusion of an artery.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, C., Fraemohs, L. & Dejana, E. The role of junctional adhesion molecules in vascular inflammation. Nat Rev Immunol 7, 467–477 (2007). https://doi.org/10.1038/nri2096

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2096

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing