Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Parsing the Polarity Code

Key Points

  • The molecular mechanisms that drive cell polarization are remarkably conserved throughout metazoans. A group of genes (called the par genes), first discovered in the nematode Caenorhabditis elegans, is now known to regulate cell polarity in diverse organisms and in many different contexts.

  • The par genes encode a diverse set of proteins that includes kinases, scaffold, adaptor and zinc-finger proteins. Surprisingly, many of them physically interact with each other.

  • The PAR proteins also interact physically with other sets of polarity proteins including Lethal giant larvae (LGL1/2) and PALS1 (protein associated with LIN7), which have been implicated in epithelial cell polarization.

  • A PDZ-domain protein called PAR6 functions as a targeting subunit for the atypical protein kinase C (aPKC), and binds to PAR3, LGL1/2 and PALS1. It also binds to, and is regulated by, a small GTPase, CDC42.

  • CDC42 has a key role in the polarization of budding yeast and in many other polarity processes in animal cells, such as in neutrophil chemotaxis.

  • The PAR proteins and their binding partners also function in asymmetric cell division, by controlling the orientation of the mitotic spindle.

  • Downstream of the PAR proteins is a complex that includes the Gα subunits of the heterotrimeric G-proteins, and a protein called PINS.

  • In vertebrates, PINS binds to a large nuclear protein called NuMA, which stabilizes microtubules and is required for the organization of the mitotic spindle poles.

  • PINS and Gα somehow conspire to attach and/or regulate the pulling forces on aster microtubules that attach the spindle poles to the cell cortex. These pulling forces position and orientate the poles.

  • In cells in which the cell fate determinants have been polarized along the same axis as the orientated spindle poles, cell division segregates the determinants into different daughters.

  • Cell polarization involves new signal transduction networks that interact in complex ways with the actin and tubulin cytoskeletal filaments and the plasma membrane to generate asymmetric structures.

Abstract

Cell polarization is used both to mediate physical fates, as, for example, in orientated cell migration, and to specify differential phenotypic fates, as in the asymmetric division of stem cells. Strikingly, the same sets of conserved proteins are used throughout the Metazoa for these purposes. The PAR proteins organize cell polarization in many contexts, and the PINS proteins control the orientation of mitosis. These proteins seem to function as components of a self-organizing network, and an important goal is to decode — or parse — the molecular language of this network.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Symmetric and asymmetric cell divisions.
Figure 2: The PAR proteins and their interactions.
Figure 3: Biological functions of CDC42 and the PAR6–PAR3–aPKC complex.
Figure 4: Mechanism of activation of CDC42 during neutrophil chemotaxis.
Figure 5: Comparative structure and polarity-protein localization in Drosophila melanogaster and vertebrate epithelial cells.
Figure 6: The Crumbs polarity complex.
Figure 7: The Scribble, Discs large and Lethal giant larvae polarity proteins.
Figure 8: Interactions of PAR6 with its known binding partners.
Figure 9: Distribution of the PAR proteins in the Caenorhabditis elegans zygote.

Similar content being viewed by others

References

  1. Kemphues, K. J., Priess, J. R., Morton, D. G. & Cheng, N. S. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52, 311–320 (1988). Describes the initial screen for par genes.

    CAS  PubMed  Google Scholar 

  2. Kemphues, K. PARsing embryonic polarity. Cell 101, 345–348 (2000).

    CAS  PubMed  Google Scholar 

  3. Schneider, S. Q. & Bowerman, B. Cell polarity and the cytoskeleton in the Caenorhabditis elegans zygote. Annu. Rev. Genet. 37, 221–249 (2003). An excellent, comprehensive review of cell polarity in C. elegans.

    CAS  PubMed  Google Scholar 

  4. Gomes, J. E. & Bowerman, B. Caenorhabditis elegans par genes. Curr. Biol. 12, R444 (2002).

    CAS  PubMed  Google Scholar 

  5. Tabuse, Y. et al. Atypical protein kinase C cooperates with PAR-3 to establish embryonic polarity in Caenorhabditis elegans. Development 125, 3607–3614 (1998).

    CAS  PubMed  Google Scholar 

  6. Guo, S. & Kemphues, K. J. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81, 611–620 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Watts, J. L., Morton, D. G., Bestman, J. & Kemphues, K. J. The C. elegans par-4 gene encodes a putative serine-threonine kinase required for establishing embryonic asymmetry. Development 127, 1467–1475 (2000).

    CAS  PubMed  Google Scholar 

  8. Hung, T. J. & Kemphues, K. J. PAR-6 is a conserved PDZ domain-containing protein that colocalizes with PAR-3 in Caenorhabditis elegans embryos. Development 126, 127–135 (1999).

    CAS  PubMed  Google Scholar 

  9. Etemad-Moghadam, B., Guo, S. & Kemphues, K. J. Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos. Cell 83, 743–752 (1995).

    CAS  PubMed  Google Scholar 

  10. Morton, D. G. et al. The Caenorhabditis elegans par-5 gene encodes a 14-3-3 protein required for cellular asymmetry in the early embryo. Dev. Biol. 241, 47–58 (2002).

    CAS  PubMed  Google Scholar 

  11. Levitan, D. J., Boyd, L., Mello, C. C., Kemphues, K. J. & Stinchcomb, D. T. par-2, a gene required for blastomere asymmetry in Caenorhabditis elegans, encodes zinc-finger and ATP-binding motifs. Proc. Natl Acad. Sci. USA 91, 6108–6112 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Joberty, G., Petersen, C., Gao, L. & Macara, I. G. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nature Cell Biol. 2, 531–539 (2000). Describes the interaction of PAR6 with CDC42 and the first evidence that PAR6 regulates polarity in mammalian epithelial cells.

    CAS  PubMed  Google Scholar 

  13. Izumi, Y. et al. An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J. Cell Biol. 143, 95–106 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Suzuki, A. et al. Atypical protein kinase C is involved in the evolutionarily conserved Par protein complex and plays a critical role in establishing epithelia-specific junctional structures. J. Cell Biol. 152, 1183–1196 (2001). Provides the first evidence that aPKC regulates mammalian epithelial cell polarization.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin, D. et al. A mammalian PAR-3–PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nature Cell Biol. 2, 540–547 (2000). Reports the interaction of CDC42 with PAR6.

    CAS  PubMed  Google Scholar 

  16. Benton, R. & Johnston, D. S. A conserved oligomerization domain in Drosophila Bazooka/PAR-3 is important for apical localization and epithelial polarity. Curr. Biol. 13, 1330–1334 (2003).

    CAS  PubMed  Google Scholar 

  17. Mizuno, K. et al. Self-association of PAR-3-mediated by the conserved N-terminal domain contributes to the development of epithelial tight junctions. J. Biol. Chem. 278, 31240–31250 (2003).

    CAS  PubMed  Google Scholar 

  18. Martin, S. G. & St Johnston, D. A role for Drosophila LKB1 in anterior-posterior axis formation and epithelial polarity. Nature 421, 379–384 (2003).

    CAS  PubMed  Google Scholar 

  19. Hurd, T. W. et al. Phosphorylation-dependent binding of 14-3-3 to the polarity protein Par3 regulates cell polarity in mammalian epithelia. Curr. Biol. 13, 2082–2090 (2003).

    CAS  PubMed  Google Scholar 

  20. Benton, R. & Johnston, D. S. Drosophila PAR-1 and 14-3-3 inhibit Bazooka/PAR–3 to establish complementary cortical domains in polarized cells. Cell 115, 691–704 (2003). Identifies Par3 as a Par1 substrate and a Par5 binding partner, and shows that phosphorylation regulates the localization of Par3.

    CAS  PubMed  Google Scholar 

  21. Ossipova, O., Bardeesy, N., DePinho, R. A. & Green, J. B. LKB1 (XEEK1) regulates Wnt signalling in vertebrate development. Nature Cell Biol. 5, 889–894 (2003).

    CAS  PubMed  Google Scholar 

  22. Johnson, D. I. Cdc42: an essential Rho-type GTPase controlling eukaryotic cell polarity. Microbiol. Mol. Biol. Rev. 63, 54–105 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Schuyler, S. C. & Pellman, D. Search, capture and signal: games microtubules and centrosomes play. J. Cell Sci. 114, 247–255 (2001).

    CAS  PubMed  Google Scholar 

  24. Gotta, M., Abraham, M. C. & Ahringer, J. CDC-42 controls early cell polarity and spindle orientation in C. elegans. Curr. Biol. 11, 482–488 (2001).

    CAS  PubMed  Google Scholar 

  25. Kay, A. J. & Hunter, C. P. CDC-42 regulates PAR protein localization and function to control cellular and embryonic polarity in C. elegans. Curr. Biol. 11, 474–481 (2001).

    CAS  PubMed  Google Scholar 

  26. Qiu, R. G., Abo, A. & Steven Martin, G. A human homolog of the C. elegans polarity determinant Par-6 links Rac and Cdc42 to PKCζ signaling and cell transformation. Curr. Biol. 10, 697–707 (2000).

    CAS  PubMed  Google Scholar 

  27. Johansson, A., Driessens, M. & Aspenstrom, P. The mammalian homologue of the Caenorhabditis elegans polarity protein PAR-6 is a binding partner for the Rho GTPases Cdc42 and Rac1. J. Cell Sci. 113, 3267–3275 (2000).

    CAS  PubMed  Google Scholar 

  28. Gao, L., Joberty, G. & Macara, I. G. Assembly of epithelial tight junctions is negatively regulated by Par6. Curr. Biol. 12, 221–225 (2002).

    CAS  PubMed  Google Scholar 

  29. Etienne-Manneville, S. & Hall, A. Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCζ. Cell 106, 489–498 (2001). Links PAR6 to the polarization of migrating astrocytes.

    CAS  PubMed  Google Scholar 

  30. Meili, R. & Firtel, R. A. Two poles and a compass. Cell 114, 153–156 (2003).

    CAS  PubMed  Google Scholar 

  31. Iijima, M., Huang, Y. E. & Devreotes, P. Temporal and spatial regulation of chemotaxis. Dev. Cell 3, 469–478 (2002).

    CAS  PubMed  Google Scholar 

  32. Wang, F. et al. Lipid products of PI(3)Ks maintain persistent cell polarity and directed motility in neutrophils. Nature Cell Biol. 4, 513–518 (2002).

    CAS  PubMed  Google Scholar 

  33. Li, Z. et al. Directional sensing requires Gβγ-mediated PAK1 and PIXα-dependent activation of Cdc42. Cell 114, 215–227 (2003).Identifies a new pathway linking CDC42 to the polarization of neutrophils that are undergoing chemotaxis.

    CAS  PubMed  Google Scholar 

  34. Xu, J. et al. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114, 201–214 (2003).

    CAS  PubMed  Google Scholar 

  35. Shi, S. H., Jan, L. Y. & Jan, Y. N. Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell 112, 63–75 (2003).

    CAS  PubMed  Google Scholar 

  36. Yamanaka, T. et al. PAR-6 regulates aPKC activity in a novel way and mediates cell–cell contact-induced formation of the epithelial junctional complex. Genes Cells 6, 721–731 (2001).

    CAS  PubMed  Google Scholar 

  37. Burbelo, P. D., Drechsel, D. & Hall, A. A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases. J. Biol. Chem. 270, 29071–29074 (1995).

    CAS  PubMed  Google Scholar 

  38. Garrard, S. M. et al. Structure of Cdc42 in a complex with the GTPase-binding domain of the cell polarity protein, Par6. EMBO J. 22, 1125–1133 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hirose, T. et al. Involvement of ASIP/PAR-3 in the promotion of epithelial tight junction formation. J. Cell Sci. 115, 2485–2495 (2002).

    CAS  PubMed  Google Scholar 

  40. Nagai-Tamai, Y., Mizuno, K., Hirose, T., Suzuki, A. & Ohno, S. Regulated protein-protein interaction between aPKC and PAR-3 plays an essential role in the polarization of epithelial cells. Genes Cells 7, 1161–1171 (2002).

    CAS  PubMed  Google Scholar 

  41. Gao, L., Macara, I. G. & Joberty, G. Multiple splice variants of Par3 and of a novel related gene, Par3L, produce proteins with different binding properties. Gene 294, 99–107 (2002).

    CAS  PubMed  Google Scholar 

  42. Gonzalez-Mariscal, L., Betanzos, A., Nava, P. & Jaramillo, B. E. Tight junction proteins. Prog. Biophys. Mol. Biol. 81, 1–44 (2003).

    CAS  PubMed  Google Scholar 

  43. Tsukita, S. & Furuse, M. Claudin-based barrier in simple and stratified cellular sheets. Curr. Opin. Cell Biol. 14, 531–536 (2002).

    CAS  PubMed  Google Scholar 

  44. Tepass, U., Tanentzapf, G., Ward, R. & Fehon, R. Epithelial cell polarity and cell junctions in Drosophila. Annu. Rev. Genet. 35, 747–784 (2001).

    CAS  PubMed  Google Scholar 

  45. Bachmann, A., Schneider, M., Theilenberg, E., Grawe, F. & Knust, E. Drosophila Stardust is a partner of Crumbs in the control of epithelial cell polarity. Nature 414, 638–643 (2001).

    CAS  PubMed  Google Scholar 

  46. Medina, E., Lemmers, C., Lane-Guermonprez, L. & Le Bivic, A. Role of the Crumbs complex in the regulation of junction formation in Drosophila and mammalian epithelial cells. Biol. Cell 94, 305–313 (2002).

    CAS  PubMed  Google Scholar 

  47. Hong, Y., Stronach, B., Perrimon, N., Jan, L. Y. & Jan, Y. N. Drosophila Stardust interacts with Crumbs to control polarity of epithelia but not neuroblasts. Nature 414, 634–638 (2001).

    CAS  PubMed  Google Scholar 

  48. Muller, H. A. & Wieschaus, E. armadillo, bazooka, and stardust are critical for early stages in formation of the zonula adherens and maintenance of the polarized blastoderm epithelium in Drosophila. J. Cell Biol. 134, 149–163 (1996).

    CAS  PubMed  Google Scholar 

  49. Roh, M. H. et al. The Maguk protein, Pals1, functions as an adapter, linking mammalian homologues of Crumbs and Discs Lost. J. Cell Biol. 157, 161–172 (2002). Identifies mammalian homologues of D. melanogaster polarity proteins and shows that they form a complex at tight junctions in epithelial cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Roh, M. H., Liu, C. J., Laurinec, S. & Margolis, B. The carboxyl terminus of zona occludens-3 binds and recruits a mammalian homologue of discs lost to tight junctions. J. Biol. Chem. 277, 27501–27509 (2002).

    CAS  PubMed  Google Scholar 

  51. Makarova, O., Roh, M. H., Liu, C. J., Laurinec, S. & Margolis, B. Mammalian Crumbs3 is a small transmembrane protein linked to protein associated with Lin-7 (Pals1). Gene 302, 21–29 (2003).

    CAS  PubMed  Google Scholar 

  52. Lemmers, C. et al. hINADl/PATJ, a homolog of discs lost, interacts with crumbs and localizes to tight junctions in human epithelial cells. J. Biol. Chem. 277, 25408–25415 (2002).

    CAS  PubMed  Google Scholar 

  53. Roh, M. H., Fan, S., Liu, C. J. & Margolis, B. The Crumbs3–Pals1 complex participates in the establishment of polarity in mammalian epithelial cells. J. Cell Sci. 116, 2895–2906 (2003).

    CAS  PubMed  Google Scholar 

  54. Hurd, T. W., Gao, L., Roh, M. H., Macara, I. G. & Margolis, B. Direct interaction of two polarity complexes implicated in epithelial tight junction assembly. Nature Cell Biol. 5, 137–142 (2003). Demonstrates a physical link between PAR6–CDC42–PAR3 and the PALS1–CRB1–PATJ complex.

    CAS  PubMed  Google Scholar 

  55. Petronczki, M. & Knoblich, J. A. DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblasts in Drosophila. Nature Cell Biol. 3, 43–49 (2001).

    CAS  PubMed  Google Scholar 

  56. Ohno, S. Intercellular junctions and cellular polarity: the PAR-aPKC complex, a conserved core cassette playing fundamental roles in cell polarity. Curr. Opin. Cell Biol. 13, 641–648 (2001).

    CAS  PubMed  Google Scholar 

  57. Perez-Moreno, M., Jamora, C. & Fuchs, E. Sticky business: orchestrating cellular signals at adherens junctions. Cell 112, 535–548 (2003).

    CAS  PubMed  Google Scholar 

  58. Tepass, U. Adherens junctions: new insight into assembly, modulation and function. Bioessays 24, 690–695 (2002).

    CAS  PubMed  Google Scholar 

  59. Takai, Y. & Nakanishi, H. Nectin and afadin: novel organizers of intercellular junctions. J. Cell Sci. 116, 17–27 (2003).

    CAS  PubMed  Google Scholar 

  60. Bilder, D. & Perrimon, N. Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature 403, 676–680 (2000).

    CAS  PubMed  Google Scholar 

  61. Bilder, D., Li, M. & Perrimon, N. Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science 289, 113–116 (2000).

    CAS  PubMed  Google Scholar 

  62. Bossinger, O., Klebes, A., Segbert, C., Theres, C. & Knust, E. Zonula adherens formation in Caenorhabditis elegans requires dlg-1, the homologue of the Drosophila gene discs large. Dev. Biol. 230, 29–42 (2001).

    CAS  PubMed  Google Scholar 

  63. Tanentzapf, G. & Tepass, U. Interactions between the crumbs, lethal giant larvae and bazooka pathways in epithelial polarization. Nature Cell Biol. 5, 46–52 (2003).

    CAS  PubMed  Google Scholar 

  64. Bilder, D., Schober, M. & Perrimon, N. Integrated activity of PDZ protein complexes regulates epithelial polarity. Nature Cell Biol. 5, 53–58 (2003). References 63 and 64 provide genetic evidence for links between distinct polarity complexes in D. melanogaster.

    CAS  PubMed  Google Scholar 

  65. Yamanaka, T. et al. Mammalian Lgl forms a protein complex with PAR-6 and aPKC independently of PAR-3 to regulate epithelial cell polarity. Curr. Biol. 13, 734–743 (2003). Evidence that LGL1/2 interacts directly with PAR6 and is phosphorylated by aPKC.

    CAS  PubMed  Google Scholar 

  66. Betschinger, J., Mechtler, K. & Knoblich, J. A. The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl. Nature 422, 326–330 (2003).Elegant study on the identification and function of the Par6–Lgl interaction in D. melanogaster.

    CAS  PubMed  Google Scholar 

  67. Plant, P. J. et al. A polarity complex of mPar-6 and atypical PKC binds, phosphorylates and regulates mammalian Lgl. Nature Cell Biol 5, 301–308 (2003). Evidence for the interaction of PAR6 and LGL1/2.

    CAS  PubMed  Google Scholar 

  68. Musch, A. et al. Mammalian homolog of Drosophila tumor suppressor lethal (2) giant larvae interacts with basolateral exocytic machinery in Madin–Darby canine kidney cells. Mol. Biol. Cell 13, 158–168 (2002).

    CAS  PubMed  Google Scholar 

  69. Wei, X. & Malicki, J. nagie oko, encoding a MAGUK-family protein, is essential for cellular patterning of the retina. Nature Genet. 31, 150–157 (2002).

    CAS  PubMed  Google Scholar 

  70. Horne-Badovinac, S. et al. Positional cloning of heart and soul reveals multiple roles for PKCλ in zebrafish organogenesis. Curr. Biol. 11, 1492–1502 (2001).

    CAS  PubMed  Google Scholar 

  71. Etienne-Manneville, S. & Hall, A. Cdc42 regulates GSK-3β and adenomatous polyposis coli to control cell polarity. Nature 421, 753–756 (2003).

    CAS  PubMed  Google Scholar 

  72. Palazzo, A. F. et al. Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization. Curr. Biol. 11, 1536–1541 (2001).

    CAS  PubMed  Google Scholar 

  73. Palazzo, A. F., Cook, T. A., Alberts, A. S. & Gundersen, G. G. mDia mediates Rho-regulated formation and orientation of stable microtubules. Nature Cell Biol. 3, 723–729 (2001).

    CAS  PubMed  Google Scholar 

  74. Akhmanova, A. et al. Clasps are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts. Cell 104, 923–935 (2001). Describes a mechanism for linking microtubules to the cell cortex by CLIP-binding proteins.

    CAS  PubMed  Google Scholar 

  75. Perez, F., Diamantopoulos, G. S., Stalder, R. & Kreis, T. E. CLIP-170 highlights growing microtubule ends in vivo. Cell 96, 517–527 (1999).

    CAS  PubMed  Google Scholar 

  76. Fukata, M. et al. Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell 109, 873–885 (2002).

    CAS  PubMed  Google Scholar 

  77. Coquelle, F. M. et al. LIS1, CLIP-170's key to the dynein/dynactin pathway. Mol. Cell. Biol. 22, 3089–3102 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Cuenca, A. A., Schetter, A., Aceto, D., Kemphues, K. & Seydoux, G. Polarization of the C. elegans zygote proceeds via distinct establishment and maintenance phases. Development 130, 1255–1265 (2003).

    CAS  PubMed  Google Scholar 

  79. Guo, S. & Kemphues, K. J. A non-muscle myosin required for embryonic polarity in Caenorhabditis elegans. Nature 382, 455–458 (1996).

    CAS  PubMed  Google Scholar 

  80. Severson, A. F. & Bowerman, B. Myosin and the PAR proteins polarize microfilament-dependent forces that shape and position mitotic spindles in Caenorhabditis elegans. J. Cell Biol. 161, 21–26 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Schaefer, M., Shevchenko, A. & Knoblich, J. A. A protein complex containing Inscuteable and the Gα-binding protein Pins orients asymmetric cell divisions in Drosophila. Curr. Biol. 10, 353–362 (2000).

    CAS  PubMed  Google Scholar 

  82. Yu, F., Morin, X., Cai, Y., Yang, X. & Chia, W. Analysis of partner of inscuteable, a novel player of Drosophila asymmetric divisions, reveals two distinct steps in inscuteable apical localization. Cell 100, 399–409 (2000). References 81 and 82 identify Pins as a component of the asymmetric cell division machinery in neuroblasts.

    CAS  PubMed  Google Scholar 

  83. Du, Q., Stukenberg, P. T. & Macara, I. G. A mammalian partner of inscuteable binds NuMA and regulates mitotic spindle organization. Nature Cell Biol. 3, 1069–1075 (2001). Identification of NuMA as the partner of PINS that regulates mitosis.

    CAS  PubMed  Google Scholar 

  84. Bernard, M. L., Peterson, Y. K., Chung, P., Jourdan, J. & Lanier, S. M. Selective interaction of AGS3 with G-proteins and the influence of AGS3 on the activation state of G-proteins. J. Biol. Chem. 276, 1585–1593 (2001).

    CAS  PubMed  Google Scholar 

  85. Colombo, K. et al. Translation of polarity cues into asymmetric spindle positioning in Caenorhabditis elegans embryos. Science 300, 1957–1961 (2003). Links C. elegans PINS and Gα to PAR proteins.

    CAS  PubMed  Google Scholar 

  86. Kimple, R. J., Kimple, M. E., Betts, L., Sondek, J. & Siderovski, D. P. Structural determinants for GoLoco-induced inhibition of nucleotide release by Gα subunits. Nature 416, 878–881 (2002).

    CAS  PubMed  Google Scholar 

  87. Gotta, M. & Ahringer, J. Distinct roles for Gα and Gβγ in regulating spindle position and orientation in Caenorhabditis elegans embryos. Nature Cell Biol. 3, 297–300 (2001).

    CAS  PubMed  Google Scholar 

  88. Srinivasan, D. G., Fisk, R. M., Xu, H. & van den Heuvel, S. A complex of LIN-5 and GPR proteins regulates G protein signaling and spindle function in C. elegans. Genes Dev. 17, 1225–1239 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Gotta, M., Dong, Y., Peterson, Y. K., Lanier, S. M. & Ahringer, J. Asymmetrically distributed C. elegans homologs of AGS3/PINS control spindle position in the early embryo. Curr. Biol. 13, 1029–1037 (2003). Identifies a role for C. elegans PINS in asymmetric cell division.

    CAS  PubMed  Google Scholar 

  90. Schaefer, M., Petronczki, M., Dorner, D., Forte, M. & Knoblich, J. A. Heterotrimeric G proteins direct two modes of asymmetric cell division in the Drosophila nervous system. Cell 107, 183–194 (2001). Identifies a role for Gα in asymmetric cell division.

    CAS  PubMed  Google Scholar 

  91. Yu, F., Cai, Y., Kaushik, R., Yang, X. & Chia, W. Distinct roles of Gαi and Gβ13F subunits of the heterotrimeric G protein complex in the mediation of Drosophila neuroblast asymmetric divisions. J. Cell Biol. 162, 623–633 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Zeng, C. NuMA: a nuclear protein involved in mitotic centrosome function. Microsc. Res. Tech. 49, 467–477 (2000).

    CAS  PubMed  Google Scholar 

  93. Du, Q., Taylor, L., Compton, D. A. & Macara, I. G. LGN blocks the ability of NuMA to bind and stabilize microtubules. A mechanism for mitotic spindle assembly regulation. Curr. Biol. 12, 1928–1933 (2002).

    CAS  PubMed  Google Scholar 

  94. Kaushik, R., Yu, F., Chia, W., Yang, X. & Bahri, S. Subcellular localization of LGN during mitosis: evidence for its cortical localization in mitotic cell culture systems and its requirement for normal cell cycle progression. Mol. Biol. Cell 14, 3144–3155 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Drewes, G., Ebneth, A., Preuss, U., Mandelkow, E. M. & Mandelkow, E. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell 89, 297–308 (1997).

    CAS  PubMed  Google Scholar 

  96. Blumer, J. B. et al. Interaction of activator of G-protein signaling 3 (AGS3) with LKB1, a serine/threonine kinase involved in cell polarity and cell cycle progression: phosphorylation of the G-protein regulatory (GPR) motif as a regulatory mechanism for the interaction of GPR motifs with Giα. J. Biol. Chem. 278, 23217–23220 (2003).

    CAS  PubMed  Google Scholar 

  97. Pellettieri, J. & Seydoux, G. Anterior-posterior polarity in C. elegans and Drosophila—PARallels and differences. Science 298, 1946–1950 (2002).

    CAS  PubMed  Google Scholar 

  98. Jan, Y. N. & Jan, L. Y. Asymmetric cell division in the Drosophila nervous system. Nature Rev. Neurosci. 2, 772–779 (2001). Valuable review on the molecular basis for polarization and asymmetric cell divisions.

    CAS  Google Scholar 

  99. Wodarz, A., Ramrath, A., Kuchinke, U. & Knust, E. Bazooka provides an apical cue for Inscuteable localization in Drosophila neuroblasts. Nature 402, 544–547 (1999).

    CAS  PubMed  Google Scholar 

  100. Schober, M., Schaefer, M. & Knoblich, J. A. Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature 402, 548–551 (1999).

    CAS  PubMed  Google Scholar 

  101. Ohshiro, T., Yagami, T., Zhang, C. & Matsuzaki, F. Role of cortical tumour-suppressor proteins in asymmetric division of Drosophila neuroblast. Nature 408, 593–596 (2000).

    CAS  PubMed  Google Scholar 

  102. Petritsch, C., Tavosanis, G., Turck, C. W., Jan, L. Y. & Jan, Y. N. The Drosophila myosin VI Jaguar is required for basal protein targeting and correct spindle orientation in mitotic neuroblasts. Dev. Cell 4, 273–281 (2003).

    CAS  PubMed  Google Scholar 

  103. Allen, W. E., Zicha, D., Ridley, A. J. & Jones, G. E. A role for Cdc42 in macrophage chemotaxis. J. Cell Biol. 141, 1147–1157 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Rojas, R., Ruiz, W. G., Leung, S. M., Jou, T. S. & Apodaca, G. Cdc42-dependent modulation of tight junctions and membrane protein traffic in polarized Madin–Darby canine kidney cells. Mol. Biol. Cell 12, 2257–2274 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Stowers, L., Yelon, D., Berg, L. J. & Chant, J. Regulation of the polarization of T cells toward antigen-presenting cells by Ras-related GTPase CDC42. Proc. Natl Acad. Sci. USA 92, 5027–5031 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Wong, K. et al. Signal transduction in neuronal migration: roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit–Robo pathway. Cell 107, 209–221 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to Q. Du, A. Spang and D. Lannigan for critical reading of the manuscript, to those who provided invaluable information before publication, and for support from the National Cancer Institute, Department of Health and Human Services. Cell polarity is a large and rapidly growing field, and I regret that it was impossible to cite numerous important papers.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Locuslink

par

pkc3

Flybase

14-3-3ε

Bazooka

Crb

Dlg

Insc

Jar

Lgl

Lkb1

Mira

Par1

Par6

Pins

Scrib

Sdt

Zip

Saccharomyces genome database

Cdc42

Swiss-Prot

AGS3

GSK3β

LGN

PAK1

PIXα

Glossary

ISOTROPIC

Identical in all directions; invariant with respect to direction.

TESSELLATION

A checkered or mosaic pattern of polygons that are arranged on a surface in such a way as to leave no region uncovered. The word 'tessellate' is derived from the Ionic version of the Greek word 'tesseres', which, in English, means 'four'. The first tilings were made from square tiles.

APICAL SURFACE

The surface of an epithelial or endothelial cell that faces the lumen of a cavity or tube, or the outside of the organism.

BASOLATERAL SURFACE

The surface of an epithelial cell that adjoins underlying tissue.

MITOTIC SPINDLE

A highly dynamic bipolar array of microtubules that forms during mitosis or meiosis and is used to move the duplicated chromosomes apart.

PLANAR POLARITY

The polarity of cells in the plane of an epithelium.

14-3-3 PROTEIN

A regulatory protein that binds to phosphorylated forms of various proteins that are involved in signal transduction and cell-cycle control.

RHO-FAMILY GTPases

A subfamily of small (21 kDa) GTP-binding proteins that are related to Ras, and that regulate the cytoskeleton. The nucleotide-bound state is regulated by GTPase-activating proteins, which catalyse hydrolysis of the bound GTP, and guanine nucleotide-exchange factors, which catalyse GDP–GTP exchange.

ASTRAL MICROTUBULES

Microtubules that radiate from the mitotic spindle poles to the cell cortex. They are involved in positioning and alignment of the spindle poles during cell division.

LEADING EDGE

The thin margin of a lamellipodium that spans the area of the cell from the plasma membrane to a depth of about 1 μm into the lamellipodium.

PDZ DOMAIN

Protein-interaction domain that often occurs in scaffolding proteins and is named after the founding members of this protein family (Postsynaptic-density protein of 95 kDa (PSD95), Discs large (Dlg) and Zona occludens-1 (ZO 1)).

TIGHT JUNCTION

A belt-like region of adhesion between adjacent epithelial or endothelial cells. Tight junctions regulate paracellular flux, and contribute to the maintenance of cell polarity by stopping molecules from diffusing in the plane of the membrane.

ADHERENS JUNCTION

A cell–cell adhesion complex that contains cadherins and catenins that are attached to cytoplasmic actin filaments.

MARGINAL ZONE

The most apical region of cell–cell contact in D. melanogaster epithelia. It is a boundary region between the free apical surface of the cells and the adherens junction (zona adherens) that forms the primary cell–cell attachment.

ASTROCYTES

Star-shaped glial cells that support the tissue of the central nervous system.

MITOTIC CATASTROPHE

Cell death that occurs as a consequence of defective mitosis, usually because of a failure in chromosome segregation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macara, I. Parsing the Polarity Code. Nat Rev Mol Cell Biol 5, 220–231 (2004). https://doi.org/10.1038/nrm1332

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1332

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing