Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of asymmetric cell division: flies and worms pave the way

Key Points

  • Asymmetric cell division can be divided into four main steps: symmetry breaking, polarity establishment, determinant segregation and spindle positioning. As a result of these steps, a mother cell can give rise to two daughter cells with different fates.

  • Symmetry breaking and polarity establishment are exemplified using the one-cell Caenorhabditis elegans embryo. This example illustrates the general principle whereby local modulation of the actin cytoskeleton is crucial for symmetry breaking and for polarity establishment.

  • The mechanisms by which cell polarity is translated into segregation of fate determinants are reviewed, with an emphasis on Drosophila melanogaster neuroblasts. In addition, the importance of regulated trafficking in ensuring proper cell-fate acquisition is illustrated using the example of D. melanogaster sensory organ precursors.

  • The mechanisms by which cell polarity is coupled to spindle positioning are covered, focusing again on the one-cell C. elegans embryo. Here, the available evidence indicates that spindle positioning is mediated by microtubule depolymerization and dynein function, as well as by heterotrimeric G proteins and associated components.

  • The consequences for proliferation control of defective asymmetric division of D. melanogaster neuroblasts are reviewed, and these underscore why findings in flies and worms are relevant for understanding self-renewing normal and cancer stem cells.

  • The review also includes a brief discussion of asymmetric cell division in vertebrates, and provides a taster of some promising directions for this exciting field.

Abstract

Asymmetric cell division is fundamental for generating diversity in multicellular organisms. The mechanisms that govern asymmetric cell division are increasingly well understood, owing notably to studies that were conducted in Drosophila melanogaster and Caenorhabditis elegans. Lessons learned from these two model organisms also apply to cells that divide asymmetrically in other metazoans, such as self-renewing stem cells in mammals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intrinsic asymmetric cell division.
Figure 2: Asymmetric cell division in worms and flies.
Figure 3: Live imaging of asymmetric cell division.
Figure 4: Cortical force generation during spindle positioning in Caenorhabditis elegans.

Similar content being viewed by others

References

  1. Munro, E., Nance, J. & Priess, J. R. Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior–posterior polarity in the early C. elegans embryo. Dev. Cell 7, 413–424 (2004).

    CAS  PubMed  Google Scholar 

  2. Motegi, F. & Sugimoto, A. Sequential functioning of the ECT-2 RhoGEF, RHO-1 and CDC-42 establishes cell polarity in Caenorhabditis elegans embryos. Nature Cell Biol. 8, 978–985 (2006).

    CAS  PubMed  Google Scholar 

  3. Schonegg, S. & Hyman, A. A. CDC-42 and RHO-1 coordinate acto-myosin contractility and PAR protein localization during polarity establishment in C. elegans embryos. Development 133, 3507–3516 (2006).

    CAS  PubMed  Google Scholar 

  4. Goldstein, B. & Hird, S. N. Specification of the anteroposterior axis in Caenorhabditis elegans. Development 122, 1467–1474 (1996).

    CAS  PubMed  Google Scholar 

  5. Jenkins, N., Saam, J. R. & Mango, S. E. CYK-4/GAP provides a localized cue to initiate anteroposterior polarity upon fertilization. Science 313, 1298–1301 (2006). This study reports that the GAP CYK-4 is donated to the zygote by the sperm and is required to initiate establishment of A–P polarity in C. elegans embryos, presumably through local downregulation of Rho activity.

    CAS  PubMed  Google Scholar 

  6. O'Connell, K. F., Maxwell, K. N. & White, J. G. The spd-2 gene is required for polarization of the anteroposterior axis and formation of the sperm asters in the Caenorhabditis elegans zygote. Dev. Biol. 222, 55–70 (2000).

    CAS  PubMed  Google Scholar 

  7. Hamill, D. R., Severson, A. F., Carter, J. C. & Bowerman, B. Centrosome maturation and mitotic spindle assembly in C. elegans require SPD-5, a protein with multiple coiled-coil domains. Dev. Cell 3, 673–684 (2002).

    CAS  PubMed  Google Scholar 

  8. Cowan, C. R. & Hyman, A. A. Cyclin E–Cdk2 temporally regulates centrosome assembly and establishment of polarity in Caenorhabditis elegans embryos. Nature Cell Biol. 8, 1441–1447 (2006). In this study, a laser microbeam was used to ablate the centrosome, which demonstrated that the centrosome is normally needed to initiate A–P polarity establishment in C. elegans embryos.

    CAS  PubMed  Google Scholar 

  9. Cowan, C. R. & Hyman, A. A. Centrosomes direct cell polarity independently of microtubule assembly in C. elegans embryos. Nature 431, 92–96 (2004).

    CAS  PubMed  Google Scholar 

  10. Sonneville, R. & Gönczy, P. zyg-11 and cul-2 regulate progression through meiosis II and polarity establishment in C. elegans. Development 131, 3527–3543 (2004).

    CAS  PubMed  Google Scholar 

  11. Tsai, M. C. & Ahringer, J. Microtubules are involved in anterior–posterior axis formation in C. elegans embryos. J. Cell Biol. 179, 397–402 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Etemad-Moghadam, B., Guo, S. & Kemphues, K. J. Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignement in early C. elegans embryos. Cell 83, 743–752 (1995).

    CAS  PubMed  Google Scholar 

  13. Tabuse, Y. et al. Atypical protein kinase C cooperates with PAR-3 to establish embryonic polarity in Caenorhabditis elegans. Development 125, 3607–3614 (1998).

    CAS  PubMed  Google Scholar 

  14. Hung, T. J. & Kemphues, K. J. PAR-6 is a conserved PDZ domain-containing protein that colocalizes with PAR-3 in Caenorhabditis elegans embryos. Development 126, 127–135 (1999).

    CAS  PubMed  Google Scholar 

  15. Cuenca, A. A., Schetter, A., Aceto, D., Kemphues, K. & Seydoux, G. Polarization of the C. elegans zygote proceeds via distinct establishment and maintenance phases. Development 130, 1255–1265 (2003).

    CAS  PubMed  Google Scholar 

  16. Boyd, L., Guo, S., Levitan, D., Stinchcomb, D. T. & Kemphues, K. J. PAR-2 is asymmetrically distributed and promotes association of P granules and PAR-1 with the cortex in C. elegans embryos. Development 122, 3075–3084 (1996).

    CAS  PubMed  Google Scholar 

  17. Guo, S. & Kemphues, K. J. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81, 611–620 (1995).

    CAS  PubMed  Google Scholar 

  18. Morton, D. G. et al. The Caenorhabditis elegans par-5 gene encodes a 14–3–3 protein required for cellular asymmetry in the early embryo. Dev. Biol. 241, 47–58 (2002).

    CAS  PubMed  Google Scholar 

  19. Hao, Y., Boyd, L. & Seydoux, G. Stabilization of cell polarity by the C. elegans RING protein PAR-2. Dev. Cell 10, 199–208 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hill, D. P. & Strome, S. An analysis of the role of microfilaments in the establishment and maintenance of asymmetry in Caenorhabditis elegans zygotes. Dev. Biol. 125, 75–84 (1988).

    CAS  PubMed  Google Scholar 

  21. Guo, S. & Kemphues, K. J. A non-muscle myosin required for embryonic polarity in Caenorhabditis elegans. Nature 382, 455–458 (1996).

    CAS  PubMed  Google Scholar 

  22. Shelton, C. A., Carter, J. C., Ellis, G. C. & Bowerman, B. The nonmuscle myosin regulatory light chain gene mlc-4 is required for cytokinesis, anterior–posterior polarity, and body morphology during Caenorhabditis elegans embryogenesis. J. Cell Biol. 146, 439–451 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cheeks, R. J. et al. C. elegans PAR proteins function by mobilizing and stabilizing asymmetrically localized protein complexes. Curr. Biol. 14, 851–862 (2004).

    CAS  PubMed  Google Scholar 

  24. Morton, D. G., Roos, J. M. & Kemphues, K. J. par-4, a gene required for cytoplasmic localization and determination of specific cell types in Caenorhabditis elegans embryogenesis. Genetics 130, 771–790 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Beers, M. & Kemphues, K. Depletion of the co-chaperone CDC-37 reveals two modes of PAR-6 cortical association in C. elegans embryos. Development 133, 3745–3754 (2006).

    CAS  PubMed  Google Scholar 

  26. Gotta, M., Abraham, M. C. & Ahringer, J. CDC-42 controls early cell polarity and spindle orientation in C. elegans. Curr. Biol. 11, 482–488 (2001).

    CAS  PubMed  Google Scholar 

  27. Aceto, D., Beers, M. & Kemphues, K. J. Interaction of PAR-6 with CDC-42 is required for maintenance but not establishment of PAR asymmetry in C. elegans. Dev. Biol. 299, 386–397 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Johnstone, O. & Lasko, P. Translational regulation and RNA localization in Drosophila oocytes and embryos. Annu. Rev. Genet. 35, 365–406 (2001).

    CAS  PubMed  Google Scholar 

  29. DeRenzo, C., Reese, K. J. & Seydoux, G. Exclusion of germ plasm proteins from somatic lineages by cullin-dependent degradation. Nature 424, 685–689 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Doe, C. Q., Chu-LaGraff, Q., Wright, D. M. & Scott, M. P. The prospero gene specifies cell fates in the Drosophila central nervous system. Cell 65, 451–464 (1991).

    CAS  PubMed  Google Scholar 

  31. Vaessin, H. et al. prospero is expressed in neuronal precursors and encodes a nuclear protein that is involved in the control of axonal outgrowth in Drosophila. Cell 67, 941–953 (1991).

    CAS  PubMed  Google Scholar 

  32. Spana, E. P. & Doe, C. Q. The prospero transcription factor is asymmetrically localized to the cell cortex during neuroblast mitosis in Drosophila. Development 121, 3187–3195 (1995).

    CAS  PubMed  Google Scholar 

  33. Hirata, J., Nakagoshi, H., Nabeshima, Y. & Matsuzaki, F. Asymmetric segregation of the homeodomain protein Prospero during Drosophila development. Nature 377, 627–630 (1995).

    CAS  PubMed  Google Scholar 

  34. Knoblich, J. A., Jan, L. Y. & Jan, Y. N. Asymmetric segregation of Numb and Prospero during cell division. Nature 377, 624–627 (1995).

    CAS  PubMed  Google Scholar 

  35. Schuldt, A. J. et al. Miranda mediates asymmetric protein and RNA localization in the developing nervous system. Genes Dev. 12, 1847–1857 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Broadus, J., Fuerstenberg, S. & Doe, C. Q. Staufen-dependent localization of prospero mRNA contributes to neuroblast daughter-cell fate. Nature 391, 792–795 (1998).

    CAS  PubMed  Google Scholar 

  37. Bello, B., Reichert, H. & Hirth, F. The brain tumor gene negatively regulates neural progenitor cell proliferation in the larval central brain of Drosophila. Development 133, 2639–2648 (2006).

    CAS  PubMed  Google Scholar 

  38. Betschinger, J., Mechtler, K. & Knoblich, J. A. Asymmetric segregation of the tumor suppressor Brat regulates self-renewal in Drosophila neural stem cells. Cell 124, 1241–1253 (2006). This article demonstrates that during asymmetric division of D. melanogaster neuroblasts, the protein Brat is inherited strictly by the GMC, where it prevents self-renewal, probably by interfering with MYC at the post-transcriptional level. See also references 37 and 39.

    CAS  PubMed  Google Scholar 

  39. Lee, C. Y., Wilkinson, B. D., Siegrist, S. E., Wharton, R. P. & Doe, C. Q. Brat is a Miranda cargo protein that promotes neuronal differentiation and inhibits neuroblast self-renewal. Dev. Cell 10, 441–449 (2006).

    CAS  PubMed  Google Scholar 

  40. Uemura, T., Shepherd, S., Ackerman, L., Jan, L. Y. & Jan, Y. N. numb, a gene required in determination of cell fate during sensory organ formation in Drosophila embryos. Cell 58, 349–360 (1989).

    CAS  PubMed  Google Scholar 

  41. Lu, B., Rothenberg, M., Jan, L. Y. & Jan, Y. N. Partner of Numb colocalizes with Numb during mitosis and directs Numb asymmetric localization in Drosophila neural and muscle progenitors. Cell 95, 225–235 (1998).

    CAS  PubMed  Google Scholar 

  42. Rhyu, M. S., Jan, L. Y. & Jan, Y. N. Asymmetric distribution of Numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell 76, 477–491 (1994).

    CAS  PubMed  Google Scholar 

  43. Lee, C. Y. et al. Drosophila Aurora-A kinase inhibits neuroblast self-renewal by regulating aPKC/Numb cortical polarity and spindle orientation. Genes Dev. 20, 3464–3474 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, H. et al. Aurora-A acts as a tumor suppressor and regulates self-renewal of Drosophila neuroblasts. Genes Dev. 20, 3453–3463 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Mayer, B., Emery, G., Berdnik, D., Wirtz-Peitz, F. & Knoblich, J. A. Quantitative analysis of protein dynamics during asymmetric cell division. Curr. Biol. 15, 1847–1854 (2005).

    CAS  PubMed  Google Scholar 

  46. Barros, C. S., Phelps, C. B. & Brand, A. H. Drosophila nonmuscle myosin II promotes the asymmetric segregation of cell fate determinants by cortical exclusion rather than active transport. Dev. Cell 5, 829–840 (2003).

    CAS  PubMed  Google Scholar 

  47. Ikeshima-Kataoka, H., Skeath, J. B., Nabeshima, Y., Doe, C. Q. & Matsuzaki, F. Miranda directs Prospero to a daughter cell during Drosophila asymmetric divisions. Nature 390, 625–629 (1997).

    CAS  PubMed  Google Scholar 

  48. Shen, C. P., Jan, L. Y. & Jan, Y. N. Miranda is required for the asymmetric localization of Prospero during mitosis in Drosophila. Cell 90, 449–458 (1997).

    CAS  PubMed  Google Scholar 

  49. Petritsch, C., Tavosanis, G., Turck, C. W., Jan, L. Y. & Jan, Y. N. The Drosophila myosin VI Jaguar is required for basal protein targeting and correct spindle orientation in mitotic neuroblasts. Dev. Cell 4, 273–281 (2003).

    CAS  PubMed  Google Scholar 

  50. Shen, C. P. et al. Miranda as a multidomain adapter linking apically localized Inscuteable and basally localized Staufen and Prospero during asymmetric cell division in Drosophila. Genes Dev. 12, 1837–1846 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Matsuzaki, F., Ohshiro, T., Ikeshima-Kataoka, H. & Izumi, H. miranda localizes staufen and prospero asymmetrically in mitotic neuroblasts and epithelial cells in early Drosophila embryogenesis. Development 125, 4089–4098 (1998).

    CAS  PubMed  Google Scholar 

  52. Wodarz, A., Ramrath, A., Kuchinke, U. & Knust, E. Bazooka provides an apical cue for Inscuteable localization in Drosophila neuroblasts. Nature 402, 544–547 (1999).

    CAS  PubMed  Google Scholar 

  53. Wodarz, A., Ramrath, A., Grimm, A. & Knust, E. Drosophila atypical protein kinase C associates with Bazooka and controls polarity of epithelia and neuroblasts. J. Cell Biol. 150, 1361–1374 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Schober, M., Schaefer, M. & Knoblich, J. A. Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature 402, 548–551 (1999).

    CAS  PubMed  Google Scholar 

  55. Petronczki, M. & Knoblich, J. A. DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblasts in Drosophila. Nature Cell Biol. 3, 43–49 (2001).

    CAS  PubMed  Google Scholar 

  56. Parmentier, M. L. et al. Rapsynoid/Partner of Inscuteable controls asymmetric division of larval neuroblasts in Drosophila. J. Neurosci. 20, RC84 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Schaefer, M., Shevchenko, A. & Knoblich, J. A. A protein complex containing Inscuteable and the Gα -binding protein Pins orients asymmetric cell divisions in Drosophila. Curr. Biol. 10, 353–362 (2000).

    CAS  PubMed  Google Scholar 

  58. Yu, F., Morin, X., Cai, Y., Yang, X. & Chia, W. Analysis of Partner of Inscuteable, a novel player of Drosophila asymmetric divisions, reveals two distinct steps in inscuteable apical localization. Cell 100, 399–409 (2000).

    CAS  PubMed  Google Scholar 

  59. Schaefer, M., Petronczki, M., Dorner, D., Forte, M. & Knoblich, J. A. Heterotrimeric G proteins direct two modes of asymmetric cell division in the Drosophila nervous system. Cell 107, 183–194 (2001).

    CAS  PubMed  Google Scholar 

  60. Yu, F. et al. Locomotion defects, together with Pins, regulates heterotrimeric G-protein signaling during Drosophila neuroblast asymmetric divisions. Genes Dev. 19, 1341–1353 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Siller, K. H., Cabernard, C. & Doe, C. Q. The NuMA-related Mud protein binds Pins and regulates spindle orientation in Drosophila neuroblasts. Nature Cell Biol. 8, 594–600 (2006).

    CAS  PubMed  Google Scholar 

  62. Bowman, S. K., Neumuller, R. A., Novatchkova, M., Du, Q. & Knoblich, J. A. The Drosophila NuMA homolog Mud regulates spindle orientation in asymmetric cell division. Dev. Cell 10, 731–742 (2006).

    CAS  PubMed  Google Scholar 

  63. Izumi, Y., Ohta, N., Hisata, K., Raabe, T. & Matsuzaki, F. Drosophila Pins-binding protein Mud regulates spindle-polarity coupling and centrosome organization. Nature Cell Biol. 8, 586–593 (2006).

    CAS  PubMed  Google Scholar 

  64. Kraut, R., Chia, W., Jan, L. Y., Jan, Y. N. & Knoblich, J. A. Role of Inscuteable in orienting asymmetric cell divisions in Drosophila. Nature 383, 50–55 (1996).

    CAS  PubMed  Google Scholar 

  65. Peng, C. Y., Manning, L., Albertson, R. & Doe, C. Q. The tumour-suppressor genes lgl and dlg regulate basal protein targeting in Drosophila neuroblasts. Nature 408, 596–600 (2000).

    CAS  PubMed  Google Scholar 

  66. Fuse, N., Hisata, K., Katzen, A. L. & Matsuzaki, F. Heterotrimeric G proteins regulate daughter cell size asymmetry in Drosophila neuroblast divisions. Curr. Biol. 13, 947–954 (2003).

    CAS  PubMed  Google Scholar 

  67. Yu, F., Cai, Y., Kaushik, R., Yang, X. & Chia, W. Distinct roles of Gαi and Gβ13F subunits of the heterotrimeric G protein complex in the mediation of Drosophila neuroblast asymmetric divisions. J. Cell Biol. 162, 623–633 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ohshiro, T., Yagami, T., Zhang, C. & Matsuzaki, F. Role of cortical tumour-suppressor proteins in asymmetric division of Drosophila neuroblast. Nature 408, 593–596 (2000).

    CAS  PubMed  Google Scholar 

  69. Betschinger, J., Eisenhaber, F. & Knoblich, J. A. Phosphorylation-induced autoinhibition regulates the cytoskeletal protein Lethal (2) giant larvae. Curr. Biol. 15, 276–282 (2005).

    CAS  PubMed  Google Scholar 

  70. Betschinger, J., Mechtler, K. & Knoblich, J. A. The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl. Nature 422, 326–330 (2003). The authors report that aPKC phosphorylates the tumour-suppressor protein Lgl, which can thus promote recruitment of Pon and Mira to the basal cell cortex and ensure their inheritance by the GMC.

    CAS  PubMed  Google Scholar 

  71. Lehman, K., Rossi, G., Adamo, J. E. & Brennwald, P. Yeast homologues of tomosyn and lethal giant larvae function in exocytosis and are associated with the plasma membrane SNARE, Sec9. J. Cell Biol. 146, 125–140 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Strand, D. et al. The Drosophila lethal(2) giant larvae tumor suppressor protein forms homo-oligomers and is associated with nonmuscle myosin II heavy chain. J. Cell Biol. 127, 1361–1373 (1994).

    CAS  PubMed  Google Scholar 

  73. Lu, B., Usui, T., Uemura, T., Jan, L. & Jan, Y. N. Flamingo controls the planar polarity of sensory bristles and asymmetric division of sensory organ precursors in Drosophila. Curr. Biol. 9, 1247–1250 (1999).

    CAS  PubMed  Google Scholar 

  74. Roegiers, F., Younger-Shepherd, S., Jan, L. Y. & Jan, Y. N. Two types of asymmetric divisions in the Drosophila sensory organ precursor cell lineage. Nature Cell Biol. 3, 58–67 (2001).

    CAS  PubMed  Google Scholar 

  75. Bellaiche, Y. et al. The Partner of Inscuteable/Discs-large complex is required to establish planar polarity during asymmetric cell division in Drosophila. Cell 106, 355–366 (2001).

    CAS  PubMed  Google Scholar 

  76. Bellaiche, Y., Beaudoin-Massiani, O., Stuttem, I. & Schweisguth, F. The planar cell polarity protein Strabismus promotes Pins anterior localization during asymmetric division of sensory organ precursor cells in Drosophila. Development 131, 469–478 (2004).

    CAS  PubMed  Google Scholar 

  77. Guo, M., Bier, E., Jan, L. Y. & Jan, Y. N. Tramtrack acts downstream of Numb to specify distinct daughter cell fates during asymmetric cell divisions in the Drosophila PNS. Neuron 14, 913–925 (1995).

    CAS  PubMed  Google Scholar 

  78. Okabe, M., Imai, T., Kurusu, M., Hiromi, Y. & Okano, H. Translational repression determines a neuronal potential in Drosophila asymmetric cell division. Nature 411, 94–98 (2001).

    CAS  PubMed  Google Scholar 

  79. Schweisguth, F. & Posakony, J. W. Antagonistic activities of Suppressor of Hairless and Hairless control alternative cell fates in the Drosophila adult epidermis. Development 120, 1433–1441 (1994).

    CAS  PubMed  Google Scholar 

  80. Zeng, C., Younger-Shepherd, S., Jan, L. Y. & Jan, Y. N. Delta and Serrate are redundant Notch ligands required for asymmetric cell divisions within the Drosophila sensory organ lineage. Genes Dev. 12, 1086–1091 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Berdnik, D., Torok, T., Gonzalez-Gaitan, M. & Knoblich, J. A. The endocytic protein α-adaptin is required for numb-mediated asymmetric cell division in Drosophila. Dev. Cell 3, 221–231 (2002).

    CAS  PubMed  Google Scholar 

  82. Skeath, J. B. & Doe, C. Q. Sanpodo and Notch act in opposition to Numb to distinguish sibling neuron fates in the Drosophila CNS. Development 125, 1857–1865 (1998).

    CAS  PubMed  Google Scholar 

  83. Hutterer, A. & Knoblich, J. A. Numb and α-adaptin regulate Sanpodo endocytosis to specify cell fate in Drosophila external sensory organs. EMBO Rep. 6, 836–842 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Seugnet, L., Simpson, P. & Haenlin, M. Requirement for dynamin during Notch signaling in Drosophila neurogenesis. Dev. Biol. 192, 585–598 (1997).

    CAS  PubMed  Google Scholar 

  85. Tang, H. et al. Numb proteins specify asymmetric cell fates via an endocytosis- and proteasome-independent pathway. Mol. Cell Biol. 25, 2899–2909 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Le Borgne, R. & Schweisguth, F. Unequal segregation of Neuralized biases Notch activation during asymmetric cell division. Dev. Cell 5, 139–148 (2003).

    CAS  PubMed  Google Scholar 

  87. Lai, E. C., Deblandre, G. A., Kintner, C. & Rubin, G. M. Drosophila neuralized is a ubiquitin ligase that promotes the internalization and degradation of Delta. Dev. Cell 1, 783–794 (2001).

    CAS  PubMed  Google Scholar 

  88. Pavlopoulos, E. et al. neuralized encodes a peripheral membrane protein involved in Delta signaling and endocytosis. Dev. Cell 1, 807–816 (2001).

    CAS  PubMed  Google Scholar 

  89. Emery, G. et al. Asymmetric Rab 11 endosomes regulate Delta recycling and specify cell fate in the Drosophila nervous system. Cell 122, 763–773 (2005). This study revealed that the recycling endosome is clustered around the centrosome in one of the two daughters of SOP asymmetric cell division, in a Numb- and Neur-independent manner, and that this results in enhanced Delta activity.

    CAS  PubMed  Google Scholar 

  90. Grill, S. W., Gönczy, P., Stelzer, E. H. & Hyman, A. A. Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature 409, 630–633 (2001).

    CAS  PubMed  Google Scholar 

  91. Grill, S. W., Howard, J., Schaffer, E., Stelzer, E. H. & Hyman, A. A. The distribution of active force generators controls mitotic spindle position. Science 301, 518–521 (2003). The analysis of centrosome fragments induced by a laser microbeam revealed that the imbalance in pulling forces acting on the two spindle poles in C. elegans embryos results from a larger number of cortical force generators being active on the posterior side.

    CAS  PubMed  Google Scholar 

  92. Coue, M., Lombillo, V. A. & McIntosh, J. R. Microtubule depolymerization promotes particle and chromosome movement in vitro. J. Cell Biol. 112, 1165–1175 (1991).

    CAS  PubMed  Google Scholar 

  93. Lombillo, V. A., Stewart, R. J. & McIntosh, J. R. Minus-end-directed motion of kinesin-coated microspheres driven by microtubule depolymerization. Nature 373, 161–164 (1995).

    CAS  PubMed  Google Scholar 

  94. Wang, H. W. et al. Architecture of the Dam1 kinetochore ring complex and implications for microtubule-driven assembly and force-coupling mechanisms. Nature Struct. Mol. Biol. 14, 721–726 (2007).

    Google Scholar 

  95. Labbé, J. C., Maddox, P. S., Salmon, E. D. & Goldstein, B. PAR proteins regulate microtubule dynamics at the cell cortex in C. elegans. Curr. Biol. 13, 707–714 (2003).

    PubMed  Google Scholar 

  96. Kozlowski, C., Srayko, M. & Nédélec, F. Cortical microtubule contacts position the spindle in C. elegans embryos. Cell 129, 499–510 (2007).

    CAS  PubMed  Google Scholar 

  97. Srayko, M., Kaya, A., Stamford, J. & Hyman, A. A. Identification and characterization of factors required for microtubule growth and nucleation in the early C. elegans embryo. Dev. Cell 9, 223–236 (2005).

    CAS  PubMed  Google Scholar 

  98. Nguyen-Ngoc, T., Afshar, K. & Gönczy, P. Coupling of cortical dynein and Gα proteins mediates spindle positioning in Caenorhabditis elegans. Nature Cell Biol. 9, 1294–1302 (2007). This study shows that microtubule dynamics and dynein function are both required for the generation of pulling forces in C. elegans embryos, and that LIN-5–GPR-1/2–G α promote the presence of dynein at the cell cortex.

    CAS  PubMed  Google Scholar 

  99. Couwenbergs, C. et al. Heterotrimeric G protein signaling functions with dynein to promote spindle positioning in C. elegans. J. Cell Biol. 179, 15–22 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Pecreaux, J. et al. Spindle oscillations during asymmetric cell division require a threshold number of active cortical force generators. Curr. Biol. 16, 2111–2122 (2006).

    CAS  PubMed  Google Scholar 

  101. Carminati, J. L. & Stearns, T. Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex. J. Cell Biol. 138, 629–641 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Han, G. et al. The Aspergillus cytoplasmic dynein heavy chain and NUDF localize to microtubule ends and affect microtubule dynamics. Curr. Biol. 11, 719–724 (2001).

    CAS  PubMed  Google Scholar 

  103. Gotta, M. & Ahringer, J. Distinct roles for Gα and Gβγ in regulating spindle position and orientation in Caenorhabditis elegans embryos. Nature Cell Biol. 3, 297–300 (2001).

    CAS  PubMed  Google Scholar 

  104. Colombo, K. et al. Translation of polarity cues into asymmetric spindle positioning in Caenorhabditis elegans embryos. Science 300, 1957–1961 (2003).

    CAS  PubMed  Google Scholar 

  105. Srinivasan, D. G., Fisk, R. M., Xu, H. & van den Heuvel, S. A complex of LIN-5 and GPR proteins regulates G protein signaling and spindle function in C. elegans. Genes Dev. 17, 1225–1239 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Gotta, M., Dong, Y., Peterson, Y. K., Lanier, S. M. & Ahringer, J. Asymmetrically distributed C. elegans homologs of AGS3/PINS control spindle position in the early embryo. Curr. Biol. 13, 1029–1037 (2003).

    CAS  PubMed  Google Scholar 

  107. Lorson, M. A., Horvitz, H. R. & van den Heuvel, S. LIN-5 is a novel component of the spindle apparatus required for chromosome segregation and cleavage plane specification in Caenorhabditis elegans. J. Cell Biol. 148, 73–86 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Afshar, K., Willard, F. S., Colombo, K., Siderovski, D. P. & Gönczy, P. Cortical localization of the Gα protein GPA-16 requires RIC-8 function during C. elegans asymmetric cell division. Development 132, 4449–4459 (2005).

    CAS  PubMed  Google Scholar 

  109. Du, Q. & Macara, I. G. Mammalian Pins is a conformational switch that links NuMA to heterotrimeric G proteins. Cell 119, 503–516 (2004). The authors discovered that the Pins- and GPR-1/2-related GoLoco-protein LGN acts as a conformational switch that bridges the Mud- and LIN-5-related coiled-coil protein NuMA with G α during mitosis in mammalian cells.

    CAS  PubMed  Google Scholar 

  110. Basto, R. et al. Flies without centrioles. Cell 125, 1375–1386 (2006).

    CAS  PubMed  Google Scholar 

  111. Afshar, K. et al. RIC-8 is required for GPR-1/2-dependent Gα function during asymmetric division of C. elegans embryos. Cell 119, 219–230 (2004).

    CAS  PubMed  Google Scholar 

  112. Tsou, M. F., Hayashi, A. & Rose, L. S. LET-99 opposes Gα/GPR signaling to generate asymmetry for spindle positioning in response to PAR and MES-1/SRC-1 signaling. Development 130, 5717–5730 (2003).

    CAS  PubMed  Google Scholar 

  113. Willard, F. S., Kimple, R. J. & Siderovski, D. P. Return of the GDI: the GoLoco Motif in cell division. Annu. Rev. Biochem. 73, 925–951 (2004).

    CAS  PubMed  Google Scholar 

  114. Hess, H. A., Roper, J. C., Grill, S. W. & Koelle, M. R. RGS-7 completes a receptor-independent heterotrimeric G protein cycle to asymmetrically regulate mitotic spindle positioning in C. elegans. Cell 119, 209–218 (2004).

    CAS  PubMed  Google Scholar 

  115. Couwembergs, C., Spilker, A. C. & Gotta, M. Control of embryonic spindle positioning and Gα activity by C. elegans RIC-8. Curr. Biol. 14, 1871–1876 (2004).

    Google Scholar 

  116. Hampoelz, B. & Knoblich, J. A. Heterotrimeric G proteins: new tricks for an old dog. Cell 119, 453–456 (2004).

    CAS  PubMed  Google Scholar 

  117. Wang, H. et al. Ric-8 controls Drosophila neural progenitor asymmetric division by regulating heterotrimeric G proteins. Nature Cell Biol. 7, 1091–1098 (2005).

    CAS  PubMed  Google Scholar 

  118. Gönczy, P., Pichler, S., Kirkham, M. & Hyman, A. A. Cytoplasmic dynein is required for distinct aspects of MTOC positioning, including centrosome separation, in the one cell stage Caenorhabditis elegans embryo. J. Cell Biol. 147, 135–150 (1999).

    PubMed  PubMed Central  Google Scholar 

  119. Lee, C. Y., Robinson, K. J. & Doe, C. Q. Lgl, Pins and aPKC regulate neuroblast self-renewal versus differentiation. Nature 439, 594–598 (2006).

    CAS  PubMed  Google Scholar 

  120. Wang, H., Ouyang, Y., Somers, W. G., Chia, W. & Lu, B. Polo inhibits progenitor self-renewal and regulates Numb asymmetry by phosphorylating Pon. Nature 449, 96–100 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Berdnik, D. & Knoblich, J. A. Drosophila Aurora-A is required for centrosome maturation and actin-dependent asymmetric protein localization during mitosis. Curr. Biol. 12, 640–647 (2002).

    CAS  PubMed  Google Scholar 

  122. Caussinus, E. & Gonzalez, C. Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nature Genet. 37, 1125–1129 (2005).

    CAS  PubMed  Google Scholar 

  123. Gonzalez, C. Spindle orientation, asymmetric division and tumour suppression in Drosophila stem cells. Nature Rev. Genet. 8, 462–472 (2007).

    CAS  PubMed  Google Scholar 

  124. Chenn, A. & McConnell, S. K. Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell 82, 631–641 (1995).

    CAS  PubMed  Google Scholar 

  125. Cayouette, M. & Raff, M. The orientation of cell division influences cell-fate choice in the developing mammalian retina. Development 130, 2329–2339 (2003).

    CAS  PubMed  Google Scholar 

  126. Haydar, T. F., Ang, E. Jr, & Rakic, P. Mitotic spindle rotation and mode of cell division in the developing telencephalon. Proc. Natl Acad. Sci. USA 100, 2890–2895 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Noctor, S. C., Martinez-Cerdeno, V., Ivic, L. & Kriegstein, A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nature Neurosci. 7, 136–144 (2004).

    CAS  PubMed  Google Scholar 

  128. Konno, D. et al. Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nature Cell Biol. 10, 93–101 (2008).

    CAS  PubMed  Google Scholar 

  129. Zhong, W., Feder, J. N., Jiang, M. M., Jan, L. Y. & Jan, Y. N. Asymmetric localization of a mammalian Numb homolog during mouse cortical neurogenesis. Neuron 17, 43–53 (1996).

    CAS  PubMed  Google Scholar 

  130. Rasin, M. R. et al. Numb and Numbl are required for maintenance of cadherin-based adhesion and polarity of neural progenitors. Nature Neurosci. 10, 819–827 (2007). The authors clarify the role of mouse Numb and Numblike by showing that the two proteins together are important for morphogenesis of the vertebrate cerebral cortex because they maintain adherens junctions of radial glial cells.

    CAS  PubMed  Google Scholar 

  131. Zhong, W., Jiang, M. M., Weinmaster, G., Jan, L. Y. & Jan, Y. N. Differential expression of mammalian Numb, Numblike and Notch1 suggests distinct roles during mouse cortical neurogenesis. Development 124, 1887–1897 (1997).

    CAS  PubMed  Google Scholar 

  132. Petersen, P. H., Zou, K., Krauss, S. & Zhong, W. Continuing role for mouse Numb and Numbl in maintaining progenitor cells during cortical neurogenesis. Nature Neurosci. 7, 803–811 (2004).

    CAS  PubMed  Google Scholar 

  133. Zigman, M. et al. Mammalian inscuteable regulates spindle orientation and cell fate in the developing retina. Neuron 48, 539–545 (2005).

    CAS  PubMed  Google Scholar 

  134. Sanada, K. & Tsai, L. H. G protein βγ subunits and AGS3 control spindle orientation and asymmetric cell fate of cerebral cortical progenitors. Cell 122, 119–131 (2005).

    CAS  PubMed  Google Scholar 

  135. Morin, X., Jaouen, F. & Durbec, P. Control of planar divisions by the G-protein regulator LGN maintains progenitors in the chick neuroepithelium. Nature Neurosci. 10, 1440–1448 (2007).

    CAS  PubMed  Google Scholar 

  136. Fischer, E. et al. Defective planar cell polarity in polycystic kidney disease. Nature Genet. 38, 21–23 (2006).

    CAS  PubMed  Google Scholar 

  137. Lechler, T. & Fuchs, E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437, 275–280 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Théry, M. et al. The extracellular matrix guides the orientation of the cell division axis. Nature Cell Biol. 7, 947–953 (2005).

    PubMed  Google Scholar 

  139. Dalgaard, J. Z. & Klar, A. J. Does S. pombe exploit the intrinsic asymmetry of DNA synthesis to imprint daughter cells for mating-type switching? Trends Genet. 17, 153–157 (2001).

    CAS  PubMed  Google Scholar 

  140. Yamada-Inagawa, T., Klar, A. J. & Dalgaard, J. Z. Schizosaccharomyces pombe switches mating type by the synthesis-dependent strand-annealing mechanism. Genetics 177, 255–265 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Shinin, V., Gayraud-Morel, B., Gomes, D. & Tajbakhsh, S. Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nature Cell Biol. 8, 677–687 (2006).

    CAS  PubMed  Google Scholar 

  142. Potten, C. S., Owen, G. & Booth, D. Intestinal stem cells protect their genome by selective segregation of template DNA strands. J. Cell Sci. 115, 2381–2388 (2002).

    CAS  PubMed  Google Scholar 

  143. Smith, G. H. Label-retaining epithelial cells in mouse mammary gland divide asymmetrically and retain their template DNA strands. Development 132, 681–687 (2005).

    CAS  PubMed  Google Scholar 

  144. Karpowicz, P. et al. Support for the immortal strand hypothesis: neural stem cells partition DNA asymmetrically in vitro. J. Cell Biol. 170, 721–732 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Rujano, M. A. et al. Polarised asymmetric inheritance of accumulated protein damage in higher eukaryotes. PLoS Biol. 4, e417 (2006).

    PubMed  PubMed Central  Google Scholar 

  146. Yamashita, Y. M., Mahowald, A. P., Perlin, J. R. & Fuller, M. T. Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science 315, 518–521 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Yamashita, Y. M., Jones, D. L. & Fuller, M. T. Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science 301, 1547–1550 (2003).

    CAS  PubMed  Google Scholar 

  148. Rebollo, E. et al. Functionally unequal centrosomes drive spindle orientation in asymmetrically dividing Drosophila neural stem cells. Dev. Cell 12, 467–474 (2007).

    CAS  PubMed  Google Scholar 

  149. Rusan, N. M. & Peifer, M. A role for a novel centrosome cycle in asymmetric cell division. J. Cell Biol. 177, 13–20 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Park, D. H. & Rose, L. S. Dynamic localization of LIN-5 and GPR-1/2 to cortical force generation domains during spindle positioning. Dev. Biol. 315, 42–54 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to K. Afshar, D. Constam, V. Hachet and J. Knoblich for critical reading of the manuscript, and to J. Knoblich also for providing the movie for Supplementary information S1. Apologies go to those authors whose work could not be covered owing to space constraints. My laboratory is supported by grants from the Swiss National Science Foundation (3100A0-102087) and Oncosuisse (OCS-01676-02-2005, OCS KLS 02024-02-2007).

Author information

Authors and Affiliations

Authors

Supplementary information

Supplementary information S1 (movie) | Asymmetric division of a Drosophila SOP

D. melanogaster sensory organ precursor (SOP) cell expressing GFP-Pon (green) and Histone2B-RFP (red). Anterior is to the left. The SOP is 10 µm in diameter. Note that GFPPon is segregated to the anterior of the SOP, and is thus inherited by pIIb. Modified with permission from ref. 1. (MOV 3318 kb)

Supplementary information S2 (movie) | Asymmetric division of a one-cell stage C. elegans embryo

C. elegans embryo expressing GFP-PIE-1 (green) and imaged using dual time-lapse DIC and fluorescence microscopy; the GFP and DIC images have been overlaid. Anterior is to the left. The embryo is 50 µm-long. Note that the bulk of GFP-PIE-1 is segregated to the posterior of the one-cell embryo. (MOV 8310 kb)

41580_2008_BFnrm2388_MOESM78_ESM.pdf

41580_2008_BFnrm2388_MOESM80_ESM.pdf

Related links

Related links

FURTHER INFORMATION

Pierre Gönczy's homepage

Glossary

Mitotic spindle

A highly dynamic array of microtubules that forms during mitosis and serves to move the sister chromatids apart.

Cell cortex

The region underlying the plasma membrane that is rich in actin filaments and associated proteins.

Pronucleus

The haploid nucleus that is derived from either sperm or oocyte and that is present in the newly fertilized zygote.

Centrosome

The principal microtubule-organizing centre of animal cells, an organelle that contains the centrioles and that anchors the minus end of microtubules.

PAR proteins

A set of six proteins that were initially identified in C. elegans and whose inactivation results in a partitioning-defective phenotype in early embryos.

PDZ domain

A protein-interaction domain that is often found in scaffolding proteins and that is named after the founding members of this protein family (PSD-95, discs-large and ZO-1).

Ring finger

A protein domain that consists of two loops that are held together at their base by Cys and His residues that form a complex with two zinc ions. Many ring fingers function in protein degradation by facilitating protein ubiquitylation.

14–3–3 proteins

Adaptor/scaffold proteins that form homo- and heterodimers and bind, through specialized phosphorylated peptide motifs, to various proteins that are involved notably in signal transduction and in cell-cycle control.

Neurectoderm

A portion of the ectoderm that is destined to become neural tissue.

Coiled-coil domain

A structural domain that can mediate oligomerization. Coiled-coils contain two to five helices that twist around each other to form a supercoil.

t-SNARE

An integral membrane protein that is present on a target membrane or organelle and that mediates fusion through interaction with a v-SNARE partner protein that is located on the fusion partner.

Sheath cell

One of the four cells that comprises the bristle sensory organ that derives from the SOP in the peripheral nervous system of D. melanogaster.

Socket cell

One of the four cells that comprises the bristle sensory organ that derives from the sensory organ precursors in the peripheral nervous system of D. melanogaster.

Aggresome

Cytoplasmic inclusions bodies that contain misfolded proteins and that are located near centrosomes.

Proteasome

A large protein complex that is responsible for degrading intracellular proteins that have been targeted for destruction, usually by the addition of ubiquitin polymers.

Niche cell

A cell that is located in the vicinity of stem cells and that provides a suitable environment for maintaining the self-renewing capacity of stem cells.

Gonial cell

A germ cell before it enters the meiotic cell cycle.

Recycling endosome

An intracellular membrane compartment that mediates the recycling of endocytosed material back to the plasma membrane.

Blastomere

A cell that is generated during embryonic cleavage divisions.

Astral microtubules

Microtubules that radiate from the mitotic spindle poles to the cell cortex. They are involved in positioning the spindle poles during cell division.

Kinetochore

A multiprotein complex that assembles on centromeric DNA and that mediates the attachment and movement of chromosomes along the microtubules of the mitotic spindle.

Ventricular zone

A layer of cells that is located immediately adjacent to the cerebral ventricles in the vertebrate brain.

Adherens junction

A cell–cell adhesion complex that contains cadherins and catenins that are attached to cytoplasmic actin filaments.

Basement membrane

A thin layer of connective tissue that underlies the epithelium of many organs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gönczy, P. Mechanisms of asymmetric cell division: flies and worms pave the way. Nat Rev Mol Cell Biol 9, 355–366 (2008). https://doi.org/10.1038/nrm2388

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2388

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing