Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The initiation and prevention of multiple sclerosis

Abstract

Although strong genetic determinants of multiple sclerosis (MS) exist, the findings of migration studies support a role for environmental factors in this disease. Through rigorous epidemiological investigation, Epstein–Barr virus infection, vitamin D nutrition and cigarette smoking have been identified as likely causal factors in MS. In this Review, the strength of this evidence is discussed, as well as the potential biological mechanisms underlying the associations between MS and environmental, lifestyle and dietary factors. Both vitamin D nutrition and cigarette smoking are modifiable; as such, increasing vitamin D levels and smoking avoidance have the potential to substantially reduce MS risk and influence disease progression. Improving our understanding of the environmental factors involved in MS will lead to new and more-effective approaches to prevent this disease.

Key Points

  • The aetiology of multiple sclerosis (MS) is multifactorial, with both genetic and environmental factors contributing to the risk of disease

  • Strong evidence supports a causal role for Epstein–Barr virus (EBV) infection in the initiation of MS

  • Primary infection with EBV and a history of infectious mononucleosis increase an individual's risk of MS, with elevation of antibody titres to EBV nuclear antigen being observed before disease onset

  • Longitudinal studies of supplementary vitamin D intake and pre-onset serum levels of 25-hydroxyvitamin D support a protective effect of vitamin D on MS risk

  • Cigarette smoking has been associated with an increased risk of MS in men and women, and changes in smoking patterns may partially explain the increasing female:male ratio in MS

  • Our understanding of how EBV infection, vitamin D metabolism, and cigarette smoking influence MS risk are limited, and further studies are required

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time of EBV seroconversion and MS.
Figure 2: Relative risk of multiple sclerosis based on levels of EBNA IgG antibody titres.
Figure 3: Mechanisms by which EBV infection might contribute to development of MS.
Figure 4: Effects of vitamin D supplementation on immune responses in human trials.
Figure 5: Link between smoking behaviour and MS risk in Canada.

Similar content being viewed by others

References

  1. MacMahon, B. & Trichopoulos, D. Epidemiology: Principles and Methods, 2nd edn (Little, Brown & Co, Boston, 1996).

    Google Scholar 

  2. Czeizel, A. E. & Dudas, I. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N. Engl. J. Med. 327, 1832–1835 (1992).

    CAS  PubMed  Google Scholar 

  3. Dwyer, T., Ponsonby, A. L., Blizzard, L., Newman, N. M. & Cochrane, J. A. The contribution of changes in the prevalence of prone sleeping position to the decline in sudden infant death syndrome in Tasmania. JAMA 273, 783–789 (1995).

    CAS  PubMed  Google Scholar 

  4. McMahon, B. J. et al. Elimination of hepatocellular carcinoma and acute hepatitis B in children 25 years after a hepatitis B newborn and catch-up immunization program. Hepatology 54, 801–807 (2011).

    PubMed  Google Scholar 

  5. Koch-Henriksen, N. The Danish Multiple Sclerosis Registry: a 50-year follow-up. Mult. Scler. 5, 293–296 (1999).

    CAS  PubMed  Google Scholar 

  6. Mayr, W. T. et al. Incidence and prevalence of multiple sclerosis in Olmsted County, Minnesota, 1985–2000. Neurology 61, 1373–1377 (2003).

    CAS  PubMed  Google Scholar 

  7. Compston, A. & Coles, A. Multiple sclerosis. Lancet 359, 1221–1231 (2002).

    PubMed  Google Scholar 

  8. Kurtzke, J. F., Beebe, G. W. & Norman, J. E. Epidemiology of multiple sclerosis in US veterans: 1. Race, sex, and geographic distribution. Neurology 29, 1228–1235 (1979).

    CAS  PubMed  Google Scholar 

  9. Wallin, M. T., Page, W. F. & Kurtzke, J. F. Multiple sclerosis in US veterans of the Vietnam era and later military service: race, sex, and geography. Ann. Neurol. 55, 65–71 (2004).

    PubMed  Google Scholar 

  10. Wallin, M. T. et al. The Gulf War era multiple sclerosis cohort: age and incidence rates by race, sex and service. Brain 135, 1778–1785 (2012).

    PubMed  Google Scholar 

  11. Hansen, T. et al. Concordance for multiple sclerosis in Danish twins: an update of a nationwide study. Mult. Scler. 11, 504–510 (2005).

    CAS  PubMed  Google Scholar 

  12. Willer, C. J., Dyment, D. A., Risch, N. J., Sadovnick, A. D. & Ebers, G. C. Twin concordance and sibling recurrence rates in multiple sclerosis. Proc. Natl Acad. Sci. USA 100, 12877–12882 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ebers, G. C., Sadovnick, A. D. & Risch, N. J. A genetic basis for familial aggregation in multiple sclerosis. Canadian Collaborative Study Group. Nature 377, 150–151 (1995).

    CAS  PubMed  Google Scholar 

  14. Schmidt, H., Williamson, D. & Ashley-Koch, A. HLA-DR15 haplotype and multiple sclerosis: a HuGE review. Am. J. Epidemiol. 165, 1097–1109 (2007).

    PubMed  Google Scholar 

  15. Sadovnick, A. D. Genetic background of multiple sclerosis. Autoimmun. Rev. 11, 163–166 (2012).

    CAS  PubMed  Google Scholar 

  16. Marrosu, M. G. et al. Multiple sclerosis in Sardinia is associated and in linkage disequilibrium with HLA-DR3 and -DR4 alleles. Am. J. Hum. Genet. 61, 454–457 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Haines, J. L. et al. Linkage of the MHC to familial multiple sclerosis suggests genetic heterogeneity. The Multiple Sclerosis Genetics Group. Hum. Mol. Genet. 7, 1229–1234 (1998).

    CAS  PubMed  Google Scholar 

  18. Lincoln, M. R. et al. Epistasis among HLA-DRB1, HLA-DQA1, and HLA-DQB1 loci determines multiple sclerosis susceptibility. Proc. Natl Acad. Sci. USA 106, 7542–7547 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Patsopoulos, N. A. & de Bakker, P. I. Genome-wide meta-analysis identifies novel multiple sclerosis susceptibility loci. Ann. Neurol. 70, 897–912 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ramagopalan, S. V. et al. Rare variants in the CYP27B1 gene are associated with multiple sclerosis. Ann. Neurol. 70, 881–886 (2011).

    CAS  PubMed  Google Scholar 

  21. Alonso, A., Hernán, M. A. & Ascherio, A. Allergy, family history of autoimmune diseases, and the risk of multiple sclerosis. Acta Neurol. Scand. 117, 15–20 (2008).

    CAS  PubMed  Google Scholar 

  22. Zorzon, M. et al. Risk factors of multiple sclerosis: a case–control study. Neurol. Sci. 24, 242–247 (2003).

    CAS  PubMed  Google Scholar 

  23. Acheson, E. D., Bachrach, C. A. & Wright, F. M. Some comments on the relationship of the distribution of multiple sclerosis to latitude, solar radiation, and other variables. Acta Psychiatr. Scand. 147, 132–147 (1960).

    Google Scholar 

  24. Gale, C. R. & Martyn, C. N. Migrant studies in multiple sclerosis. Prog. Neurobiol. 47, 425–448 (1995).

    CAS  PubMed  Google Scholar 

  25. McLeod, J. G., Hammond, S. R. & Kurtzke, J. F. Migration and multiple sclerosis in immigrants to Australia from United Kingdom and Ireland: a reassessment. I. Risk of MS by age at immigration. J. Neurol. 258, 1140–1149 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kurtzke, J. F., Beebe, G. W. & Norman, J. E. Epidemiology of multiple sclerosis in US veterans: III. Migration and the risk of MS. Neurology 35, 672–678 (1985).

    CAS  PubMed  Google Scholar 

  27. Elian, M. & Dean, G. Motor neuron disease and multiple sclerosis among immigrants to England from the Indian subcontinent, the Caribbean, and East and West Africa. J. Neurol. Neurosurg. Psychiatry 56, 454–457 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cabre, P. et al. Role of return migration in the emergence of multiple sclerosis in the French West Indies. Brain 128, 2899–2910 (2005).

    CAS  PubMed  Google Scholar 

  29. Hernán, M. A., Olek, M. J. & Ascherio, A. Geographic variation of MS incidence in two prospective studies of US women. Neurology 53, 1711–1718 (1999).

    PubMed  Google Scholar 

  30. Koch-Henriksen, N. & Sorensen, P. S. Why does the north-south gradient of incidence of multiple sclerosis seem to have disappeared on the northern hemisphere? J. Neurol. Sci. 311, 58–63 (2011).

    PubMed  Google Scholar 

  31. Alonso, A. & Hernán, M. A. Temporal trends in the incidence of multiple sclerosis: a systematic review. Neurology 71, 129–135 (2008).

    PubMed  PubMed Central  Google Scholar 

  32. Simpson, S. Jr, Blizzard, L., Otahal, P., Van der Mei, I. & Taylor, B. Latitude is significantly associated with the prevalence of multiple sclerosis: a meta-analysis. J. Neurol. Neurosurg. Psychiatry 82, 1132–1141 (2011).

    PubMed  Google Scholar 

  33. Taylor, B. V. et al. Latitudinal variation in incidence and type of first central nervous system demyelinating events. Mult. Scler. 16, 398–405 (2010).

    PubMed  Google Scholar 

  34. Henle, W. & Henle, G. in The Epstein–Barr Virus (eds Epstein, M. A. & Achong, B. G.) 61–78 (Springer, Berlin Heidelberg, New York, 1979).

    Google Scholar 

  35. Takeuchi, K. et al. Prevalence of Epstein–Barr virus in Japan: trends and future prediction. Pathol. Int. 56, 112–116 (2006).

    PubMed  Google Scholar 

  36. Hallee, T. J., Evans, A. S., Niederman, J. C., Brooks, C. M. & Voegtly, J. H. Infectious mononucleosis at the United States Military Academy. A prospective study of a single class over four years. Yale J. Biol. Med. 3, 182–195 (1974).

    Google Scholar 

  37. Warner, H. B. & Carp, R. I. Multiple sclerosis and Epstein–Barr virus. Lancet 2, 1290 (1981).

    CAS  PubMed  Google Scholar 

  38. Thacker, E. L., Mirzaei, F. & Ascherio, A. Infectious mononucleosis and risk for multiple sclerosis: a meta-analysis. Ann. Neurol. 59, 499–503 (2006).

    PubMed  Google Scholar 

  39. Bach, J. F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 347, 911–920 (2002).

    PubMed  Google Scholar 

  40. Ascherio, A. & Munch, M. Epstein-Barr virus and multiple sclerosis. Epidemiology 11, 220–224 (2000).

    CAS  PubMed  Google Scholar 

  41. Ascherio, A. & Munger, K. L. Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann. Neurol. 61, 288–299 (2007).

    PubMed  Google Scholar 

  42. Alotaibi, S., Kennedy, J., Tellier, R., Stephens, D. & Banwell, B. Epstein–Barr virus in pediatric multiple sclerosis. JAMA 291, 1875–1879 (2004).

    CAS  PubMed  Google Scholar 

  43. Pohl, D. et al. High seroprevalence of Epstein–Barr virus in children with multiple sclerosis. Neurology 67, 2063–2065 (2006).

    CAS  PubMed  Google Scholar 

  44. Banwell, B. et al. Clinical features and viral serologies in children with multiple sclerosis: a multinational observational study. Lancet Neurol. 6, 773–781 (2007).

    PubMed  Google Scholar 

  45. Levin, L. I., Munger, K. L., O'Reilly, E. J., Falk, K. I. & Ascherio, A. Primary infection with the Epstein–Barr virus and risk of multiple sclerosis. Ann. Neurol. 67, 824–830 (2010).

    PubMed  PubMed Central  Google Scholar 

  46. Beasley, R. P. Hepatitis B virus. The major etiology of hepatocellular carcinoma. Cancer 61, 1942–1956 (1988).

    CAS  PubMed  Google Scholar 

  47. Ascherio, A. et al. Epstein–barr virus antibodies and risk of multiple sclerosis: a prospective study. JAMA 286, 3083–3088 (2001).

    CAS  PubMed  Google Scholar 

  48. Levin, L. I. et al. Temporal relationship between elevation of Epstein–Barr virus antibody titres and initial onset of neurological symptoms in multiple sclerosis. JAMA 293, 2496–2500 (2005).

    CAS  PubMed  Google Scholar 

  49. Sundström, P. et al. An altered immune response to Epstein–Barr virus in multiple sclerosis: a prospective study. Neurology 62, 2277–2282 (2004).

    PubMed  Google Scholar 

  50. DeLorenze, G. N. et al. Epstein–Barr virus and multiple sclerosis: evidence of association from a prospective study with long-term follow-up. Arch. Neurol. 63, 839–844 (2006).

    PubMed  Google Scholar 

  51. Munger, K. L., Levin, L. I., O'Reilly, E. J., Falk, K. I. & Ascherio, A. Anti-Epstein–Barr virus antibodies as serological markers of multiple sclerosis: a prospective study among United States military personnel. Mult. Scler. 17, 1185–1193 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Simon, K. C., Saghafian-Hedengren, S., Sverremark-Ekström, E., Nilsson, C. & Ascherio, A. Age at Epstein–Barr virus infection and Epstein–Barr virus nuclear antigen-1 antibodies in Swedish children. Mult. Scler. Relat. Disord. 1, 136–138 (2012).

    PubMed  Google Scholar 

  53. Lünemann, J. D. & Munz, C. EBV in MS: guilty by association? Trends Immunol. 30, 243–248 (2009).

    PubMed  Google Scholar 

  54. Lovett-Racke, A. E. et al. Decreased dependence of myelin basic protein-reactive T cells on CD28-mediated costimulation in multiple sclerosis patients. A marker of activated/memory T cells. J. Clin. Invest. 101, 725–730 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Markovic-Plese, S., Cortese, I., Wandinger, K. P., McFarland, H. F. & Martin, R. CD4+CD28 costimulation-independent T cells in multiple sclerosis. J. Clin. Invest. 108, 1185–1194 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Viglietta, V., Baecher-Allan, C., Weiner, H. L. & Hafler, D. A. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 199, 971–979 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lünemann, J. D. et al. Increased frequency and broadened specificity of latent EBV nuclear antigen-1-specific T cells in multiple sclerosis. Brain 129, 1493–1506 (2006).

    PubMed  Google Scholar 

  58. Munz, C. et al. Human CD4+ T lymphocytes consistently respond to the latent Epstein–Barr virus nuclear antigen EBNA1. J. Exp. Med. 191, 1649–1660 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lünemann, J. D. et al. EBNA1-specific T cells from patients with multiple sclerosis cross react with myelin antigens and co-produce IFN-γ and IL-2. J. Exp. Med. 205, 1763–1773 (2008).

    PubMed  PubMed Central  Google Scholar 

  60. Hauser, S. L. et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med. 358, 676–688 (2008).

    CAS  PubMed  Google Scholar 

  61. Thorley-Lawson, D. A. Epstein-Barr virus: exploiting the immune system. Nat. Rev. Immunol. 1, 75–82 (2001).

    CAS  PubMed  Google Scholar 

  62. Caldwell, R. G., Wilson, J. B., Anderson, S. J. & Longnecker, R. Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity 9, 405–411 (1998).

    CAS  PubMed  Google Scholar 

  63. Pender, M. P. Infection of autoreactive B lymphocytes with EBV, causing chronic autoimmune diseases. Trends Immunol. 24, 584–588 (2003).

    CAS  PubMed  Google Scholar 

  64. Lassmann, H., Niedobitek, G., Aloisi, F. & Middeldorp, J. M. Epstein–Barr virus in the multiple sclerosis brain: a controversial issue—report on a focused workshop held in the Centre for Brain Research of the Medical University of Vienna, Austria. Brain 134, 2772–2786 (2011).

    PubMed  PubMed Central  Google Scholar 

  65. Tzartos, J. S. et al. Association of innate immune activation with latent Epstein–Barr virus in active MS lesions. Neurology 78, 15–23 (2012).

    CAS  PubMed  Google Scholar 

  66. Munz, C., Lünemann, J. D., Getts, M. T. & Miller, S. D. Antiviral immune responses: triggers of or triggered by autoimmunity? Nat. Rev. Immunol. 9, 246–258 (2009).

    PubMed  PubMed Central  Google Scholar 

  67. Salmi, A. A., Panelius, M., Halonen, P., Rinne, U. K. & Penttinen, K. Measles virus antibody in cerebrospinal fluids from patients with multiple sclerosis. Br. Med. J. 1, 477–479 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Vartdal, F., Vandvik, B. & Norrby, E. Viral and bacterial antibody responses in multiple sclerosis. Ann. Neurol. 8, 248–255 (1980).

    CAS  PubMed  Google Scholar 

  69. Derfuss, T., Hohlfeld, R. & Meinl, E. Intrathecal antibody (IgG) production against human herpesvirus type 6 occurs in about 20% of multiple sclerosis patients and might be linked to a polyspecific B-cell response. J. Neurol. 252, 986–971 (2005).

    Google Scholar 

  70. Jacobi, C., Lange, P. & Reiber, H. Quantitation of intrathecal antibodies in cerebrospinal fluid of subacute sclerosing panencephalitis, herpes simplex encephalitis and multiple sclerosis: discrimination between microorganism-driven and polyspecific immune response. J. Neuroimmunol. 187, 139–146 (2007).

    CAS  PubMed  Google Scholar 

  71. Jarius, S. et al. Polyspecific, antiviral immune response distinguishes multiple sclerosis and neuromyelitis optica. J. Neurol. Neurosurg. Psychiatry 79, 1134–1136 (2008).

    CAS  PubMed  Google Scholar 

  72. Sokal, E. M. et al. Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein–Barr virus vaccine in healthy young adults. J. Infect. Dis. 196, 1749–1753 (2007).

    PubMed  Google Scholar 

  73. Lycke, J. et al. Acyclovir treatment of relapsing–remitting multiple sclerosis. A randomized, placebo-controlled, double-blind study. J. Neurol. 243, 214–224 (1996).

    CAS  PubMed  Google Scholar 

  74. Friedman, J. E. et al. A randomized clinical trial of valacyclovir in multiple sclerosis. Mult. Scler. 11, 286–295 (2005).

    CAS  PubMed  Google Scholar 

  75. Lünemann, J. D. et al. Elevated Epstein–Barr virus-encoded nuclear antigen-1 immune responses predict conversion to multiple sclerosis. Ann. Neurol. 67, 159–169 (2010).

    PubMed  PubMed Central  Google Scholar 

  76. van der Mei, I. A., Ponsonby, A. L., Blizzard, L. & Dwyer, T. Regional variation in multiple sclerosis prevalence in Australia and its association with ambient ultraviolet radiation. Neuroepidemiology 20, 168–174 (2001).

    CAS  PubMed  Google Scholar 

  77. Ebers, G. C. Environmental factors and multiple sclerosis. Lancet Neurol. 7, 268–277 (2008).

    PubMed  Google Scholar 

  78. Handel, A. E., Giovannoni, G., Ebers, G. C. & Ramagopalan, S. V. Environmental factors and their timing in adult-onset multiple sclerosis. Nat. Rev. Neurol. 6, 156–166 (2010).

    PubMed  Google Scholar 

  79. Swank, R. L., Lerstad, O., Strøm, A. & Backer, J. Multiple sclerosis in rural Norway. Its geographic and occupational incidence in relation to nutrition. N. Engl. J. Med. 246, 721–728 (1952).

    CAS  Google Scholar 

  80. Antonovsky, A. et al. Epidemiologic study of multiple sclerosis in Israel. Arch. Neurol. 13, 183–193 (1965).

    CAS  PubMed  Google Scholar 

  81. Cendrowski, W. et al. Epidemiological study of multiple sclerosis in Western Poland. Eur. Neurol. 2, 90–108 (1969).

    CAS  PubMed  Google Scholar 

  82. van der Mei, I. A. et al. Past exposure to sun, skin phenotype and risk of multiple sclerosis: a case–control study. BMJ 327, 316–321 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kampman, M. T., Wilsgaard, T. & Mellgren, S. I. Outdoor activities and diet in childhood and adolescence relate to MS risk above the Arctic Circle. J. Neurol. 254, 471–477 (2007).

    CAS  PubMed  Google Scholar 

  84. Munger, K. L. et al. Vitamin D intake and incidence of multiple sclerosis. Neurology 62, 60–65 (2004).

    CAS  PubMed  Google Scholar 

  85. Munger, K. L., Levin, L. I., Hollis, B. W., Howard, N. S. & Ascherio, A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA 296, 2832–2838 (2006).

    CAS  PubMed  Google Scholar 

  86. Lucas, R. M. et al. Sun exposure and vitamin D are independent risk factors for CNS demyelination. Neurology 76, 540–548 (2011).

    CAS  PubMed  Google Scholar 

  87. Ascherio, A., Munger, K. L. & Simon, K. C. Vitamin D and multiple sclerosis. Lancet Neurol. 9, 599–612 (2010).

    PubMed  Google Scholar 

  88. Feskanich, D., Willett, W. C. & Colditz, G. A. Calcium, vitamin D, milk consumption, and hip fractures: a prospective study among postmenopausal women. Am. J. Clin. Nutr. 77, 504–511 (2003).

    CAS  PubMed  Google Scholar 

  89. Hollis, B. W. Circulating 25-hydroxyvitamin D levels indicative of vitamin D sufficiency: implications for establishing a new effective dietary intake recommendation for vitamin D. J. Nutr. 135, 317–322 (2005).

    CAS  PubMed  Google Scholar 

  90. Bischoff-Ferrari, H. A., Giovannucci, E., Willett, W. C., Dietrich, T. & Dawson-Hughes, B. Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. Am. J. Clin. Nutr. 84, 18–28 (2006).

    CAS  PubMed  Google Scholar 

  91. Yetley, E. A. Assessing the vitamin D status of the US population. Am. J. Clin. Nutr. 88, 558S–564S (2008).

    CAS  PubMed  Google Scholar 

  92. Looker, A. C. et al. Serum 25-hydroxyvitamin D status of the US population: 1988–1994 compared with 2000–2004. Am. J. Clin. Nutr. 88, 1519–1527 (2008).

    CAS  PubMed  Google Scholar 

  93. Gozdzik, A. et al. Low wintertime vitamin D levels in a sample of healthy young adults of diverse ancestry living in the Toronto area: associations with vitamin D intake and skin pigmentation. BMC Public Health 8, 336 (2008).

    PubMed  PubMed Central  Google Scholar 

  94. Gonzalez-Gross, M. et al. Vitamin D status among adolescents in Europe: the Healthy Lifestyle in Europe by Nutrition in Adolescence study. Br. J. Nutr. 107, 755–764 (2012).

    CAS  PubMed  Google Scholar 

  95. Ascherio, A. & Marrie, R. A. Vitamin D in MS: a vitamin for 4 seasons. Neurology 79, 208–210 (2012).

    PubMed  Google Scholar 

  96. Lucas, R. M. & Ponsonby, A. L. Considering the potential benefits as well as adverse effects of sun exposure: can all the potential benefits be provided by oral vitamin D supplementation? Prog. Biophys. Mol. Biol. 92, 140–149 (2006).

    CAS  PubMed  Google Scholar 

  97. Sundqvist, E. et al. Confirmation of association between multiple sclerosis and CYP27B1. Eur. J. Hum. Genet. 18, 1349–1352 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Simon, K. C. et al. Genetic predictors of 25-hydroxyvitamin D levels and risk of multiple sclerosis. J. Neurol. 258, 1676–1682 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang, J. T. et al. Genetics of vitamin D 1α-hydroxylase deficiency in 17 families. Am. J. Hum. Genet. 63, 1694–1702 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Torkildsen, Ø., Knappskog, P. M., Nyland, H. I. & Myhr, K. M. Vitamin D-dependent rickets as a possible risk factor for multiple sclerosis. Arch. Neurol. 65, 809–811 (2008).

    PubMed  Google Scholar 

  101. Munger, K. L., Chitnis, T. & Ascherio, A. Body size and risk of MS in two cohorts of US women. Neurology 73, 1543–1550 (2009).

    PubMed  PubMed Central  Google Scholar 

  102. Hedström, A. K., Olsson, T. & Alfredsson, L. High body mass index before age 20 is associated with increased risk for multiple sclerosis in both men and women. Mult. Scler. 18, 1334–1336 (2012).

    PubMed  Google Scholar 

  103. Mirzaei, F. et al. Gestational vitamin D and the risk of multiple sclerosis in offspring. Ann. Neurol. 70, 30–40 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Willer, C. J. et al. Timing of birth and risk of multiple sclerosis: population based study. BMJ 330, 120 (2005).

    PubMed  PubMed Central  Google Scholar 

  105. Staples, J., Ponsonby, A. L. & Lim, L. Low maternal exposure to ultraviolet radiation in pregnancy, month of birth, and risk of multiple sclerosis in offspring: longitudinal analysis. BMJ 340, c1640.

  106. Bock, G. et al. The effect of vitamin D supplementation on peripheral regulatory T cells and β cell function in healthy humans: a randomized controlled trial. Diabetes Metab. Res. Rev. 27, 942–945 (2011).

    CAS  PubMed  Google Scholar 

  107. Mahon, B. D., Gordon, S. A., Cruz, J., Cosman, F. & Cantorna, M. T. Cytokine profile in patients with multiple sclerosis following vitamin D supplementation. J. Neuroimmunol. 134, 128–132 (2003).

    CAS  PubMed  Google Scholar 

  108. Burton, J. M. et al. A phase I/II dose-escalation trial of vitamin D3 and calcium in multiple sclerosis. Neurology 74, 1852–1859 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Smolders, J. et al. Safety and T cell modulating effects of high dose vitamin D3 supplementation in multiple sclerosis. PLoS ONE 5, e15235 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Jorde, R. et al. No effect of supplementation with cholecalciferol on cytokines and markers of inflammation in overweight and obese subjects. Cytokine 50, 175–180 (2010).

    CAS  PubMed  Google Scholar 

  111. Schleithoff, S. S. et al. Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: a double-blind, randomized, placebo-controlled trial. Am. J. Clin. Nutr. 83, 754–759 (2006).

    CAS  PubMed  Google Scholar 

  112. Haddad, J. G. & Chyu, K. J. Competitive protein-binding radioassay for 25-hydroxycholecalciferol. J. Clin. Endocrinol. Metab. 33, 992–995 (1971).

    CAS  PubMed  Google Scholar 

  113. Better, O. S. et al. in Phosphate and Minerals in Health and Disease (eds Massry, S. G., Ritz, E. & Jahreis, G.) 467–472 (Plenum Press, New York, 1980).

    Google Scholar 

  114. Knippenberg, S. et al. Effect of vitamin D3 supplementation on peripheral B cell differentiation and isotype switching in patients with multiple sclerosis. Mult. Scler. 17, 1418–1423 (2011).

    CAS  PubMed  Google Scholar 

  115. Peelen, E. et al. Effects of vitamin D on the peripheral adaptive immune system: a review. Autoimmun. Rev. 10, 733–743 (2011).

    CAS  PubMed  Google Scholar 

  116. Liu, P. T. et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311, 1770–1773 (2006).

    CAS  PubMed  Google Scholar 

  117. Laaksi, I. et al. An association of serum vitamin D concentrations <40 nmol/L with acute respiratory tract infection in young Finnish men. Am. J. Clin. Nutr. 86, 714–717 (2007).

    CAS  PubMed  Google Scholar 

  118. Ginde, A. A., Mansbach, J. M. & Camargo, C. A. Jr. Association between serum 25-hydroxyvitamin D level and upper respiratory tract infection in the Third National Health and Nutrition Examination Survey. Arch. Intern. Med. 169, 384–390 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Andersen, O., Lygner, P. E., Bergström, T., Andersson, M. & Vahlne, A. Viral infections trigger multiple sclerosis relapses: a prospective seroepidemiological study. J. Neurol. 240, 417–422 (1993).

    CAS  PubMed  Google Scholar 

  120. Panitch, H. S. Influence of infection on exacerbations of multiple sclerosis. Ann. Neurol. 36, S25–S28 (1994).

    PubMed  PubMed Central  Google Scholar 

  121. Buljevac, D. et al. Prospective study on the relationship between infections and multiple sclerosis exacerbations. Brain 125, 952–960 (2002).

    CAS  PubMed  Google Scholar 

  122. Nørgaard, M. et al. Use of penicillin and other antibiotics and risk of multiple sclerosis: a population-based case–control study. Am. J. Epidemiol. 174, 945–948 (2011).

    PubMed  Google Scholar 

  123. Munger, K. L. et al. Pre-clinical serum 25-hydroxyvitamin D levels and risk of type 1 diabetes in a cohort of US military personnel. Am. J. Epidemiol. (in press).

  124. Camargo, C. A. Jr et al. Maternal intake of vitamin D during pregnancy and risk of recurrent wheeze in children at 3 y of age. Am. J. Clin. Nutr. 85, 788–795 (2007).

    CAS  PubMed  Google Scholar 

  125. Wallace, R. B. et al. Urinary tract stone occurrence in the Women's Health Initiative randomized clinical trial of calcium and vitamin D supplements. Am. J. Clin. Nutr. 94, 270–277 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Heaney, R. P., Davies, K. M., Chen, T. C., Holick, M. F. & Barger-Lux, M. J. Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol. Am. J. Clin. Nutr. 77, 204–210 (2003).

    CAS  PubMed  Google Scholar 

  127. Vieth, R. Vitamin D supplementation, 25-hydroxyvitamin D concentrations and safety. Am. J. Clin. Nutr. 69, 842–856 (1999).

    CAS  PubMed  Google Scholar 

  128. Ross A. C. et al. for the Institute of Medicine of the National Academies. DRI Dietary Reference Intakes Calcium and Vitamin D (The National Academies Press, Washington, DC, 2011).

    Google Scholar 

  129. Hernán, M. A., Olek, M. J. & Ascherio, A. Cigarette smoking and incidence of multiple sclerosis. Am. J. Epidemiol. 154, 69–74 (2001).

    PubMed  Google Scholar 

  130. Hernán, M. A. et al. Cigarette smoking and the progression of multiple sclerosis. Brain 128, 1461–1465 (2005).

    PubMed  Google Scholar 

  131. Villard-Mackintosh, L. & Vessey, M. P. Oral contraceptives and reproductive factors in multiple sclerosis incidence. Contraception 47, 161–168 (1993).

    CAS  PubMed  Google Scholar 

  132. Thorogood, M. & Hannaford, P. C. The influence of oral contraceptives on the risk of mulitple sclerosis. Br. J. Obstet. Gynaecol. 105, 1296–1299 (1998).

    CAS  PubMed  Google Scholar 

  133. Hedström, A. K., Bäärnhielm, M., Olsson, T. & Alfredsson, L. Tobacco smoking, but not Swedish snuff use, increases the risk of multiple sclerosis. Neurology 73, 696–701 (2009).

    PubMed  Google Scholar 

  134. Riise, T., Nortvedt, M. W. & Ascherio, A. Smoking is a risk factor for multiple sclerosis. Neurology 61, 1122–1124 (2003).

    PubMed  Google Scholar 

  135. Sundström, P., Nyströom, L. & Hallmans, G. Smoke exposure increases the risk for multiple sclerosis. Eur. J. Neurol. 15, 579–583 (2008).

    PubMed  Google Scholar 

  136. Orton, S. M. et al. Sex ratio of multiple sclerosis in Canada: a longitudinal study. Lancet Neurol. 5, 932–936 (2006).

    PubMed  Google Scholar 

  137. Koch-Henriksen, N. & Sørensen, P. S. The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol. 9, 520–532 (2010).

    PubMed  Google Scholar 

  138. Palacios, N., Alonso, A., Bronnum-Hansen, H. & Ascherio, A. Smoking and increased risk of multiple sclerosis: parallel trends in the sex ratio reinforce the evidence. Ann. Epidemiol. 21, 536–542 (2011).

    PubMed  PubMed Central  Google Scholar 

  139. Bass, N. H. Pathogenesis of myelin lesions in experimental cyanide encephalopathy. A microchemical study. Neurology 18, 167–177 (1968).

    CAS  PubMed  Google Scholar 

  140. Lessell, S. Experimental cyanide optic neuropathy. Arch. Ophthalmol. 86, 194–204 (1971).

    CAS  PubMed  Google Scholar 

  141. Chen, J. L. et al. Nicotine raises the influx of permeable solutes across the rat blood–brain barrier with little or no capillary recruitment. J. Cereb. Blood Flow Metab. 15, 687–698 (1995).

    CAS  PubMed  Google Scholar 

  142. Sopori, M. L. & Kozak, W. Immunomodulatory effects of cigarette smoke. J. Neuroimmunol. 83, 148–156 (1998).

    CAS  PubMed  Google Scholar 

  143. Francus, T., Klein, R. F., Staiano-Coico, L., Becker, C. G. & Siskind, G. W. Effects of tobacco glycoprotein (TGP) on the immune system. II. TGP stimulates the proliferation of human T cells and the differentiation of human B cells into Ig secreting cells. J. Immunol. 140, 1823–1829 (1988).

    CAS  PubMed  Google Scholar 

  144. Rejdak, K. et al. CSF nitric oxide metabolites are associated with activity and progression of multiple sclerosis. Neurology 63, 1439–1445 (2004).

    CAS  PubMed  Google Scholar 

  145. Simon, K. C. et al. Combined effects of smoking, anti-EBNA antibodies, and HLA-DRB1*1501 on multiple sclerosis risk. Neurology 74, 1365–1371 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. De Jager, P. L. et al. Integrating risk factors: HLA-DRB1*1501 and Epstein-Barr virus in multiple sclerosis. Neurology 70, 1113–1118 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by grants R01 NS046635, R01 NS073633 and R01 NS071082 from the NIH. The authors thank L. Unger, Harvard School of Public Health, for her technical assistance in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to researching data for the article, providing substantial contribution to discussion of the content, writing the article, and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Alberto Ascherio.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ascherio, A., Munger, K. & Lünemann, J. The initiation and prevention of multiple sclerosis. Nat Rev Neurol 8, 602–612 (2012). https://doi.org/10.1038/nrneurol.2012.198

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2012.198

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing