Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Inhibition of CD26 peptidase activity significantly improves engraftment of retrovirally transduced hematopoietic progenitors

Abstract

It has previously been shown that inhibition of CD26 (DPPIV/dipeptidylpeptidase IV) peptidase activity improves homing of hematopoietic stem cells (HSCs) to the bone marrow and increases engraftment efficiency. Here, we demonstrate that treatment of retrovirally transduced mouse bone marrow cells with the tri-peptide Diprotin A (Ile-Pro-Ile), a specific inhibitor of CD26, significantly enhances engraftment of retrovirally transduced HSCs. Treatment of transduced bone marrow cells with Diprotin A permitted long-term expression of a retrovirally encoded MHC class I gene on multiple hematopoietic cell lineages after transplantation of a suboptimal number of transduced cells. Secondary transfer experiments revealed that expression of the transduced MHC class I gene resulted from engraftment of transduced HSCs. Expression of the allogeneic MHC class I antigen on bone marrow-derived cells following transplantation of Diprotin A-treated cells was sufficient to induce transplantation tolerance. Therefore, inhibition of CD26 activity significantly enhances engraftment of limited numbers of genetically modified HSCs, resulting in physiologically relevant levels of gene transfer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Kondo M, Wagers AJ, Manz MG, Prohaska SS, Scherer DC, Beilhack GF et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol 2003; 21: 759–806.

    Article  CAS  Google Scholar 

  2. Klein C, Baum C . Gene therapy for inherited disorders of haematopoietic cells. Hematol J 2004; 5: 103–111.

    Article  CAS  Google Scholar 

  3. Fischer A, Hacein-Bey-Abina S, Cavazzana-Calvo M . Gene therapy for immunodeficiency diseases. Semin Hematol 2004; 41: 272–278.

    Article  CAS  Google Scholar 

  4. Bagley J, Iacomini J . Gene therapy progress and prospects: gene therapy in organ transplantation. Gene Therapy 2003; 10: 605.

    Article  CAS  Google Scholar 

  5. Tian C, Bagley J, Cretin N, Seth N, Wucherpfennig KW, Iacomini J . Prevention of type 1 diabetes by gene therapy. J Clin Invest 2004; 114: 969–978.

    Article  CAS  Google Scholar 

  6. Williams MA, Adams AB, Walsh MB, Shirasugi N, Onami TM, Pearson TC et al. Primary and secondary immunocompetence in mixed allogeneic chimeras. J Immunol 2003; 170: 2382.

    Article  CAS  Google Scholar 

  7. Emery DW, Nishino T, Murata K, Fragkos M, Stamatoyannopoulos G . Hematopoietic stem cell gene therapy. Int J Hematol 2002; 75: 228–236.

    Article  Google Scholar 

  8. Hossle JP, Seger RA, Steinhoff D . Gene therapy of hematopoietic stem cells: strategies for improvement. News Physiol Sci 2002; 17: 87–92.

    CAS  PubMed  Google Scholar 

  9. Christopherson II KW, Cooper S, Broxmeyer HE . Cell surface peptidase CD26/DPPIV mediates G-CSF mobilization of mouse progenitor cells. Blood 2003; 101: 4680–4686.

    Article  Google Scholar 

  10. De Meester I, Korom S, Van Damme J, Scharpe S . CD26, let it cut or cut it down. Immunol Today 1999; 20: 367–375.

    Article  CAS  Google Scholar 

  11. Baggiolini M . Chemokines and leukocyte traffic. Nature 1998; 392: 565–568.

    Article  CAS  Google Scholar 

  12. Aiuti A, Webb IJ, Bleul C, Springer T, Gutierrez-Ramos JC . The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med 1997; 185: 111–120.

    Article  CAS  Google Scholar 

  13. Kim CH, Broxmeyer HE . In vitro behavior of hematopoietic progenitor cells under the influence of chemoattractants: stromal cell-derived factor-1, steel factor, and the bone marrow environment. Blood 1998; 91: 100–110.

    CAS  Google Scholar 

  14. Christopherson II KW, Hangoc G, Broxmeyer HE . Cell surface peptidase CD26/dipeptidylpeptidase IV regulates CXCL12/stromal cell-derived factor-1 alpha-mediated chemotaxis of human cord blood CD34+ progenitor cells. J Immunol 2002; 169: 7000–7008.

    Article  Google Scholar 

  15. Sadir R, Imberty A, Baleux F, Lortat-Jacob H . Heparan sulfate/heparin oligosaccharides protect stromal cell-derived factor-1 (SDF-1)/CXCL12 against proteolysis induced by CD26/dipeptidyl peptidase IV. J Biol Chem 2004; 279: 43854–43860.

    Article  CAS  Google Scholar 

  16. Christopherson II KW, Hangoc G, Mantel CR, Broxmeyer HE . Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 2004; 305: 1000–1003.

    Article  Google Scholar 

  17. Bagley J, Tian C, Sachs DH, Iacomini J . Induction of T-cell tolerance to an MHC class I alloantigen by gene therapy. Blood 2002; 99: 4394–4399.

    Article  CAS  Google Scholar 

  18. Hodgson GS, Bradley TR . Properties of haematopoietic stem cells surviving 5-fluorouracil treatment: evidence for a pre-CFU-S cell? Nature 1979; 281: 381–382.

    Article  CAS  Google Scholar 

  19. Van Zant G . Studies of hematopoietic stem cells spared by 5-fluorouracil. J Exp Med 1984; 159: 679–690.

    Article  CAS  Google Scholar 

  20. Aguila HL, Akashi K, Domen J, Gandy KL, Lagasse E, Mebius RE et al. From stem cells to lymphocytes: biology and transplantation. Immunol Rev 1997; 157: 13–40.

    Article  CAS  Google Scholar 

  21. Akashi K, Reya T, Dalma-Weiszhausz D, Weissman IL . Lymphoid precursors. Curr Opin Immunol 2000; 12: 144–150.

    Article  CAS  Google Scholar 

  22. Kondo M, Weissman IL, Akashi K . Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 1997; 91: 661–672.

    Article  CAS  Google Scholar 

  23. Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA . A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med 1996; 184: 1101–1109.

    Article  CAS  Google Scholar 

  24. Nagasawa T, Kikutani H, Kishimoto T . Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc Natl Acad Sci USA 1994; 91: 2305–2309.

    Article  CAS  Google Scholar 

  25. Oberlin E, Amara A, Bachelerie F, Bessia C, Virelizier JL, Arenzana-Seisdedos F et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature 1996; 382: 833–835.

    Article  CAS  Google Scholar 

  26. Abe M, Akiyama T, Nakamura H, Kojima F, Harada S, Muraoka Y . First synthesis and determination of the absolute configuration of sulphostin, a novel inhibitor of dipeptidyl peptidase IV. J Nat Prod 2004; 67: 999–1004.

    Article  CAS  Google Scholar 

  27. Adams S, Miller GT, Jesson MI, Watanabe T, Jones B, Wallner BP . PT-100, a small molecule dipeptidyl peptidase inhibitor, has potent antitumor effects and augments antibody-mediated cytotoxicity via a novel immune mechanism. Cancer Res 2004; 64: 5471–5480.

    Article  CAS  Google Scholar 

  28. Ahn JH, Kim HM, Jung SH, Kang SK, Kim KR, Rhee SD et al. Synthesis and DP-IV inhibition of cyano-pyrazoline derivatives as potent anti-diabetic agents. Bioorg Med Chem Lett 2004; 14: 4461–4465.

    Article  CAS  Google Scholar 

  29. Balzarini J, Andersson E, Schols D, Proost P, Van Damme J, Svennerholm B et al. Obligatory involvement of CD26/dipeptidyl peptidase IV in the activation of the antiretroviral tripeptide glycylprolylglycinamide (GPG-NH(2)). Int J Biochem Cell Biol 2004; 36: 1848–1859.

    Article  CAS  Google Scholar 

  30. Cheon HG, Lee CM, Kim BT, Hwang KJ . Lead discovery of quinoxalinediones as an inhibitor of dipeptidyl peptidase-IV (DPP-IV) by high-throughput screening. Bioorg Med Chem Lett 2004; 14: 2661–2664.

    Article  CAS  Google Scholar 

  31. Senten K, Van Der Veken P, De Meester I, Lambeir AM, Scharpe S, Haemers A et al. Gamma-amino-substituted analogues of 1-[(S)-2,4-diaminobutanoyl]piperidine as highly potent and selective dipeptidyl peptidase II inhibitors. J Med Chem 2004; 47: 2906–2916.

    Article  CAS  Google Scholar 

  32. Takasaki K, Nakajima T, Ueno K, Nomoto Y, Higo K . Effects of combination treatment with dipeptidyl peptidase IV inhibitor and sulfonylurea on glucose levels in rats. J Pharmacol Sci 2004; 95: 291–293.

    Article  CAS  Google Scholar 

  33. Wesley UV, Tiwari S, Houghton AN . Role for dipeptidyl peptidase IV in tumor suppression of human non small cell lung carcinoma cells. Int J Cancer 2004; 109: 855–866.

    Article  CAS  Google Scholar 

  34. Kim D, Wang L, Beconi M, Eiermann GJ, Fisher MH, He H et al. (2R)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin -7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine: a potent, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem 2005; 48: 141–151.

    Article  CAS  Google Scholar 

  35. Tian C, Bagley J, Forman D, Iacomini J . Induction of central tolerance by mature T cells. J Immunol 2004; 173: 7217–7222.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Drs Mohamed Sayegh and Anil Chandraker for critical review of the manuscript, and members of the Iacomini laboratory for helpful discussions. Jessamyn Bagley is supported in part by a grant from the A-T Children's Project. Daron Forman is supported in part by NIH Training Grant T32 AI07529. This work was supported by Grants R01AI43619-06 and R01AI50602-02 from the National Institutes of Health, and a grant from the American Diabetes Association (7-04-RA-45) to JI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Iacomini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, C., Bagley, J., Forman, D. et al. Inhibition of CD26 peptidase activity significantly improves engraftment of retrovirally transduced hematopoietic progenitors. Gene Ther 13, 652–658 (2006). https://doi.org/10.1038/sj.gt.3302695

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302695

Keywords

This article is cited by

Search

Quick links