Volume 161, 2013

Formation and analysis of topographical domains between lipid membranes tethered by DNA hybrids of different lengths

Abstract

We recently described a strategy to prepare DNA-tethered lipid membranes either to fixed DNA on a surface or to DNA displayed on a supported bilayer [Boxer et al., J. Struct. Biol., 2009, 168, 190; Boxer et al., Langmuir, 2011, 27, 5492]. With the latter system, the DNA hybrids are laterally mobile; when orthogonal sense–antisense pairs of different lengths are used, the DNA hybrids segregate by height and the tethered membrane deforms to accommodate the height difference. This architecture is particularly useful for modelling interactions between membranes mediated by molecular recognition and resembles cell-to-cell junctions. The length, affinity and population of the DNA hybrids between the membranes are completely controllable. Interesting patterns of height segregation are observed by fluorescence interference contrast microscopy. Diverse behavior is observed in the segregation and pattern forming process and possible mechanisms are discussed. This model system captures some of the essential physics of synapse formation and is a step towards understanding lipid membrane behaviour in cell-to-cell junctions.

Article information

Article type
Paper
Submitted
15 May 2012
Accepted
11 Jun 2012
First published
08 Oct 2012

Faraday Discuss., 2013,161, 333-345

Formation and analysis of topographical domains between lipid membranes tethered by DNA hybrids of different lengths

M. Chung, B. J. Koo and S. G. Boxer, Faraday Discuss., 2013, 161, 333 DOI: 10.1039/C2FD20108A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements