Volume 161, 2013

Polycontinuous geometries for inverse lipid phases with more than two aqueous network domains

Abstract

Inverse bicontinuous cubic phases with two aqueous network domains separated by a smooth bilayer are firmly established as equilibrium phases in lipid/water systems. The purpose of this article is to highlight the generalisations of these bicontinuous geometries to polycontinuous geometries, which could be realised as lipid mesophases with three or more network-like aqueous domains separated by a branched bilayer. An analysis of structural homogeneity in terms of bilayer width variations reveals that ordered polycontinuous geometries are likely candidates for lipid mesophase structures, with similar chain packing characteristics to the inverse micellar phases (that once were believed not to exist due to high packing frustration). The average molecular shape required by global geometry to form these multi-network phases is quantified by the surfactant shape parameter, v/(al); we find that it adopts values close to those of the known lipid phases. We specifically analyse the 3etc(187 193) structure of hexagonal symmetry P6/mcm with three aqueous domains, the 3dia(24 220) structure of cubic symmetry I[4 with combining macron]3d composed of three distorted diamond networks, the cubic chiral 4srs(24 208) with cubic symmetry P4232 and the achiral 4srs(5 133) structure of symmetry P42/nbc, each consisting of four intergrown undistorted copies of the srs net (the same net as in the QGII gyroid phase). Structural homogeneity is analysed by a medial surface approach assuming that the head-group interfaces are constant mean curvature surfaces. To facilitate future experimental identification, we provide simulated SAXS scattering patterns that, for the 4srs(24 208) and 3dia(24 220) structures, bear remarkable similarity to those of bicontinuous QGII-gyroid and QDII-diamond phases, with comparable lattice parameters and only a single peak that cannot be indexed to the well-established structures. While polycontinuous lipid phases have, to date, not been reported, the likelihood of their formation is further indicated by the reported observation of a solid tricontinuous mesoporous silicate structure, termed IBN-9, which formed in the presence of surfactants [Han et al., Nat. Chem., 2009, 1, 123].

Article information

Article type
Paper
Submitted
01 Jun 2012
Accepted
20 Jun 2012
First published
25 Jun 2012

Faraday Discuss., 2013,161, 215-247

Polycontinuous geometries for inverse lipid phases with more than two aqueous network domains

G. E. Schröder-Turk, L. de Campo, M. E. Evans, M. Saba, S. C. Kapfer, T. Varslot, K. Grosse-Brauckmann, S. Ramsden and S. T. Hyde, Faraday Discuss., 2013, 161, 215 DOI: 10.1039/C2FD20112G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements