Skip to main content

Advertisement

Log in

In vivo absorption and scattering spectroscopy of biological tissues

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Different approaches for absorption and scattering spectroscopy of living tissues are discussed. In particular, a unique system for time-resolved reflectance and transmittance spectroscopy is presented, capable of acquiring in vivo absorption and scattering spectra of diffusive media between 600 and 1000 nm. A review of typical spectra obtained from a variety of tissue structures is shown, including female breast, forearm, abdomen, and forehead. A second-level analysis of the measured spectra permits an estimation of the concentrations of the key tissue absorbers, as well as of the Mie-equivalent scattering radii. Further, absorption and scattering spectra can be used to estimate the penetration depth of light in tissues as a function of wavelength, which is a crucial parameter in view of the possible application of optical in vivo molecular imaging in clinical diagnosis. Finally, an example of the applicability of the methodology to other biological media such as fruits and vegetables is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. C. Wilson and D. M. Patrick Wand Lowe, In-vivo and post-mortem measurements of the attenuation spectra of light in mammalian tissues, Photochem. Photobiol., 1985, 42, 153–62.

    Article  CAS  Google Scholar 

  2. T. O’Haver, An Introduction to Signal Processing in Chemical Analysis, http://www.wam.umd.edu/~toh/spectrum/TOC.html.

  3. V. Quaresima and S. J. Matcher and M. Ferrari, Identification and quantification of intrinsic optical contrast for near-infrared mammography, Photochem. Photobiol., 1998, 67, 4–14.

    Article  CAS  Google Scholar 

  4. R. M. P. Doornbos and R. Lang and M. C. Aalders and F. W. Cross and H. J. CM. Sterenborg, The determination of in-vivo human tissue optical properties and absolute chromophore concentrations using steady state diffuse reflectance spectroscopy, Phys. Med. Biol., 1999, 44, 967–981.

    Article  CAS  Google Scholar 

  5. V. Ntziachristos and X. H. Ma and A. G. Yodh and B. Chance, A multi-channel photon counting instrument for spatially resolved NIR spectroscopy, itev. Sci. Instrum., 1999, 70, 193–201.

    Article  CAS  Google Scholar 

  6. T. J. Farrell and M. S. Patterson and M. Essenpreis, Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry, Appl. Opt, 1998, 37, 1958–1972.

    Article  CAS  Google Scholar 

  7. V. Ntziachristos and A. G. Yodh and M. Schnall and B. Chance, Concurrent MRI and Diffuse Optical Tomography of Breast following Indocyanine Green enhancement, Proc. Natl. Acad. Sci. USA, 2000, 97, 2767–2772.

    Article  CAS  Google Scholar 

  8. T. H. Pham and O. Coquoz and J. B. Fishkin and E. Anderson and B. J. Tromberg, Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy, Rev. Sci. Instrum., 2000, 71, 2500–2513.

    Article  CAS  Google Scholar 

  9. For a recent review see Biomedical Optics, Trends in Optics and Photonics Series (TOPS) vol. 71, Optical Society of America, Washington DC, 2002.

  10. S. Andersson-Engels and R. Berg and A. Persson and S. Svanberg, Multispectral tissue characterization with time-resolved detection of diffusely scattered white light, Opt. Lett., 1993, 18, 1697–1699.

    Article  CAS  Google Scholar 

  11. C. af Klinteberg and R. Berg and C. Lindquist and S. Andersson-Engels and S. Svanberg, Diffusively scattered femtosecond white light examination of breast tissue in vitro and in vivo, in SPIE Conference Proceedings “Photon propagation in tissues”, eds. B. Chance and D. T. Delpy and G J. Mueller, SPIE press, Bellingham WA, 1995, vol. 2626, pp. 149–157.

    Article  Google Scholar 

  12. R. Cubeddu and A. Pifferi and P. Taroni and A. Torricelli and G. Valentini, Non-invasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast, Appl. Phys. Lett., 1999, 74, 874–876.

    Article  CAS  Google Scholar 

  13. For information on mode-locked diode lasers at several wavelengths in a broad spectral range see: www.picoquant.com.

  14. R. Cubeddu and A. Pifferi and P. Taroni and A. Torricelli and G. Valentini, Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance, Appl. Opt, 1999, 38, 3670–3680.

    Article  CAS  Google Scholar 

  15. D. Grosenick and H. Wabnitz and H. H. Rinneberg and K. T. Moesta and P. M. Schlag, Development of a time domain optical mammograph and first in vivo applications, Appl. Opt., 1999, 38, 2927–2943.

    Article  CAS  Google Scholar 

  16. R. J. Hunter and M. S. Patterson and R. A. Weersink and J. T. Bruselma and J. E. Hayward, The characterization of a two wavelength time-resolved system for the determination of hemoglobin saturation through comparison with continous wave and frequency domain systems, in OSA Trends in Optics and Photonics series (TOPS) “Advances in Optical Imaging and Photon Migration”, eds. James G. Fujimoto and Michael S. Patterson, Optical Society of America, Washington DC, 1998, vol. 21, pp. 114–118.

    CAS  Google Scholar 

  17. M. Oda and Y. Yamashita and T. Nakano and A. Suzuki and K. Shimizu and I. Hirano and F. Shimomura and E. Ohmae and T. Suzuki and Y. Tsuchiya, Near infrared time-resolved spectroscopy system for tissue oxygenation monitor, in SPIE Conference Proceedings “Optical Tomography and Spectroscopy of Tissue III”, eds. Britton Chance, Robert R. Alfano, Bruce J. Tromberg, SPIE Press, Bellingham WA, 1999, vol. 3597, pp. 611–617.

    CAS  Google Scholar 

  18. R. Cubeddu and A. Pifferi and P. Taroni and A. Torricelli, Dual-wavelength time-resolved optical mammograph for clinical studies, in SPIE Conference Proceeding “Photon Migration, Optical Coherence Tomography, and Microscopy”, eds. S. Andersson-Engels and M. F. Kaschke, SPIE Press, Bellingham WA, 2001, vol. 4431, pp. 195–198.

    Article  Google Scholar 

  19. M. S. Patterson and B. Chance and B. C. Wilson, Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties, Appl. Opt, 1989, 28, 2331–2336.

    Article  CAS  Google Scholar 

  20. A. H. Gandjbakhche and R. Nossal and R. F. Bonner, Scaling relationships for theories of anisotropic random walks applied to tissue optics, Appl. Opt, 1993, 32, 504–516.

    Article  CAS  Google Scholar 

  21. S. J. Matcher and M. Cope and D. T. Delpy, In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy, Appl. Opt, 1997, 36, 386–96.

    Article  CAS  Google Scholar 

  22. S. Prahl, Oregon Medical Laser Center website (http://omlc.ogi.edu/spectra/water/index.html)..

  23. J. R. Mourant and T. Fuselier and J. Boyer and T. M. Johnson and I. J. Bigio, Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms, Appl. Opt, 1997, 36, 949–957.

    Article  CAS  Google Scholar 

  24. A. M.K. Nilsson and C. Sturesson and D. L. Liu and S. Andersson-Engels, Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy, Appl. Opt, 1988, 37, 1256–1267.

    Article  Google Scholar 

  25. R. Cubeddu and C. D’Andréa and A. Pifferi and P. Taroni and A. Torricelli and G. Valentini, Effects of the menstrual cycle on the visible and near infrared optical properties of the human breast, Photochem. Photobiol., 2000, 72, 383–391.

    CAS  PubMed  Google Scholar 

  26. B. J. Tromberg and N. Shah and R. Lanning and A. Cerussi and J. Espinoza and T. Pham and L. Svasaand and J. Butler, Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy, Neoplasia, 2000, 2, 26–40.

    Article  CAS  Google Scholar 

  27. F. Martelli and A. Sassaroli, Y Yamada and G Zaccanti, Analytical approximate solutions of the time-domain diffusion equation in layered slabs, J. Opt Soc. Am. A, 2002, 19, 71–80.

    Article  Google Scholar 

  28. A. Kienle and M. S. Patterson, N. Doegnitz and R. Bays, G. Wagnieres and H. Van den Bergh, Noninvasive determination of the optical properties of two-layered turbid media, Appl. Opt, 1998, 37, 779–791.

    Article  CAS  Google Scholar 

  29. S. Avrillier and E. Tinet and J. M. Tualle, F. Costes, F. Revel and J. P. Ollivier, Real-time inversion using Monte Carlo results for the determination of absorption coefficients in multilayered tissues: application to noninvasive muscle oximetry I, in SPIE Conference Proceedings “Optical Tomography and Spectroscopy of Tissue IV”, eds. B. Chance and R. R. Alfano and B. J. Tromberg and M. Tamura and E. M. Sevick-Muraca, SPIE Press, Bellingham WA, 2001, vol. 4432, pp. 75–84.

    Google Scholar 

  30. A. Pifferi and A. Torricelli and P. Taroni and R. Cubeddu, Reconstruction of absorber concentrations in a two-layer structure using multi-distance time-resolved reflectance spectroscopy, Opt Lett., 2001, 26, 1963–1965.

    Article  CAS  Google Scholar 

  31. B. C. Wilson and S. L. Jacques, Optical reflectance, transmittance of tissues: principles and applications, IEEE J. Quantum Electron., 1990, 26, 2186–2199.

    Article  Google Scholar 

  32. R. Weissleder, Scaling down imaging: molecular mapping of cancer in mice, Nature Rev., 2002, 2, 11–18.

    CAS  Google Scholar 

  33. V. Ntziachristos and J. Ripoll and R. Weissleder, Would near-infrared fluorescence signals propagate through large human organs for clinical studies?, Opt Lett., 2002, 27, 333–335.

    Article  Google Scholar 

  34. R. Cubeddu, G. Canti and C. D’Andrea and A. Pifferi and P. Taroni and A. Torricelli and G. Valentini, Effects of photodynamic therapy on the absorption properties of disulphonated Aluminum pthalo-cyanine in tumor-bearing mice, J. Photochem. Photobiol., B, 2001, 60, 73–78.

    Article  CAS  Google Scholar 

  35. G. Canti and D. Lattuada and E. Leroy and R. Cubeddu and P. Taroni and G. Valentini, Action spectrum of photoactivated phthalocyanine AlS2Pc in tumor bearing mice, Anti-Cancer Drugs, 1992, 3, 139–142.

    Article  CAS  Google Scholar 

  36. R. Cubeddu and C. D’Andréa and A. Pifferi and P. Taroni and A. Torricelli, G. Valentini and M. Ruiz-Altisent and C. Valero and C. Ortiz and C. Dover and D. Johnson, Time-resolved reflectance spectroscopy applied to the non-destructive monitoring of the internal optical properties in apples, Appl. Spectrosc, 2001, 55, 1368–1374.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taroni, P., Pifferi, A., Torricelli, A. et al. In vivo absorption and scattering spectroscopy of biological tissues. Photochem Photobiol Sci 2, 124–129 (2003). https://doi.org/10.1039/b209651j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b209651j

Navigation