Skip to main content
Log in

Time-domain fluorescence lifetime imaging applied to biological tissue

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Fluorescence lifetime imaging (FLIM) is a functional imaging methodology that can provide information, not only concerning the localisation of specific fluorophores, but also about the local fluorophore environment. It may be implemented in scanning confocal or multi-photon microscopes, or in wide-field microscopes and endoscopes. When applied to tissue autofluorescence, it reveals intrinsic excellent contrast between different types and states of tissue. This article aims to review our recent progress in developing time-domain FLIM technology for microscopy and endoscopy and applying it to biological tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic/Plenum Publishers, New York, 2nd edn., 1999

    Book  Google Scholar 

  2. J. Siegel, D. S. Elson, S. E. D. Webb, K. C. Benny Lee, A. Viandas, G. L. Gambaruto, S. Lévêque-Fort, M. J. Lever, P. J. Tadrous, G. W. H. Stamp, A. L. Wallace, A. Sandison, T. Watson, P. M. W. French and F., Alvarez, Studying biological tissue with fluorescence lifetime imaging: microscopy, endoscopy, and complex decay profiles Appl. Opt. 2003 42 2995–3004

    Article  PubMed  Google Scholar 

  3. Fluorescence Lifetime Imaging for Biomedicine, invited talk presented by Paul French at the 10th Congress of the European Society for Photobiology, Vienna, 2003

  4. R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni and G., Valentini, Time-resolved fluorescence imaging in biology and medicine J. Phys. D: Appl. Phys. 2002 35 R61–R76

    Article  CAS  Google Scholar 

  5. F. S. Wouters, P. J. Verveer and P. I. H., Bastiaens, Imaging biochemistry inside cells Trends Cell Biol. 2001 11 203–211

    Article  CAS  PubMed  Google Scholar 

  6. P. J., Tadrous, Methods for imaging the structure and function of living tissues and cells: 2. Fluorescence lifetime imaging J. Pathol. 2000 191 3 229–234

    Article  CAS  PubMed  Google Scholar 

  7. P. I. H. Bastiaens and A., Squire, Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell Trends Cell Biol. 1999 9 48–52

    Article  CAS  PubMed  Google Scholar 

  8. S. Andersson-Engels, J. Johansson and S., Svanberg, Medical Diagnostic System Based on Simultaneous Multispectral Fluorescence Imaging Appl. Opt. 1994 33 8022–8029

    Article  CAS  PubMed  Google Scholar 

  9. B. B. Das, F. Liu and R. R., Alfano, Time-resolved fluorescence and photon migration studies in biomedical and model random media Rep. Progr. Phys. 1997 60 227–292

    Article  Google Scholar 

  10. D. V. O’Connor and D. Phillips, Time correlated single photon counting, Academic Press, London, 1984

    Google Scholar 

  11. I. Bugiel, K. König and H., Wabnitz, Investigation of cells by fluorescence laser scanning microscopy with subnanosecond time resolution Lasers Life Sci. 1989 3 47–53

    Google Scholar 

  12. M. Kress, T. Meier, R. Steiner, F. Dolp, R. Erdmann, U. Ortmann and A. Rück Time-resolved microspectrofluorometry and fluorescence lifetime imaging of photosensitizers using picosecond pulsed diode lasers in laser scanning microscopes J. Biomed. Opt. 2003 8 26–32

    Article  CAS  PubMed  Google Scholar 

  13. C. G. Morgan, A. C. Mitchell and J. G., Murray, Nanosecond time-resolved fluorescence microscopy: principles and practice Trans. R. Microsc. Soc. 1990 1 463–466

    Google Scholar 

  14. T. W. J. Gadella, T. M. Jovin and R. M., Clegg, Fluorescence lifetime imaging microscopy (FLIM) - spatial resolution of structures on the nanosecond timescale Biophys. Chem. 1993 48 221–239

    Article  CAS  Google Scholar 

  15. K. Carlsson and A., Liljeborg, Simultaneous confocal lifetime imaging of multiple fluorophores using the intensity-modulated multiple-wavelength scanning (IMS) technique J. Microsc. 1998 191 119–127

    Article  CAS  PubMed  Google Scholar 

  16. P. T. C. So, T. French, W. M. Yu, K. Berland, C. Y. Dong and E., Gratton, Time-resolved fluorescence microscopy using two photon excitation Bioimaging 1995 3 49–63

    Article  Google Scholar 

  17. T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Bastiaens and P. J., Parker, Imaging protein kinase C alpha activation in cells Science 1999 283 2085–2089

    Article  CAS  PubMed  Google Scholar 

  18. K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Leveque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever and P. M. W., French, Application of the stretched exponential function to fluorescence lifetime imaging Biophys. J. 2001 81 1265–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. K. Dowling, M. J. Dayel, M. J. Lever, P. M. W. French, J. D. Hares and A. K. L. Dymoke-Bradshaw Fluorescence lifetime imaging with picosecond resolution for biomedical applications Opt. Lett. 1998 23 810–812

    Article  CAS  PubMed  Google Scholar 

  20. R. Jones, K. Dowling, M. J. Cole, D. Parsons-Karavassilis, M. J. Lever, P. M. W. French, J. D. Hares and A. K. L. Dymoke- Bradshaw Fluorescence lifetime imaging using a diode-pumped all-solid-state laser system Electron. Lett. 1999 35 256–257

    Article  Google Scholar 

  21. D. S. Elson, J. Siegel, S. E. D. Webb, S. Lévêque-Fort, M. J. Lever, P. M. W. French, K. Lauritsen, M. Wahl and R., Erdmann, Fluorescence lifetime system for microscopy and multi-well plate imaging using a blue picosecond diode laser Opt. Lett. 2002 27 1409–1411

    Article  CAS  PubMed  Google Scholar 

  22. J. R. Alcala, E. Gratton and D. M., Jameson, A Multifrequency Phase Fluorometer Using the Harmonic Content of a Mode-Locked Laser Anal. Instrum. 1985 14 225–250

    Article  CAS  Google Scholar 

  23. A. Squire, P. J. Verveer and P. I. H., Bastiaens, Multiple frequency fluorescence lifetime imaging microscopy J. Microsc. 2000 197 136–149

    Article  CAS  PubMed  Google Scholar 

  24. A. C. Mitchell, J. E. Wall, J. G. Murray and C. G., Morgan, Measurement of nanosecond time-resolved fluorescence with a directly gated interline CCD camera J. Microsc. 2002 206 233–238

    Article  CAS  PubMed  Google Scholar 

  25. M. Petran, M. Hadravsky, M. D. Egger and R., Galambos, Tandem scanning reflected light microscope J. Opt. Soc. Am. 1968 58 661–664

    Article  Google Scholar 

  26. J. Bewersdorf, R. Pick and S. W., Hell, Multifocal multiphoton microscopy Opt. Lett. 1998 23 655–657

    Article  CAS  PubMed  Google Scholar 

  27. M. A. A. Neil, R. Juškaitis and T., Wilson, Method of obtaining optical sectioning by using structured light in a conventional microscope Opt. Lett. 1997 22 1905–1907

    Article  CAS  PubMed  Google Scholar 

  28. M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis and T., Wilson, Time-domain whole-field fluorescence lifetime imaging with optical sectioning J. Microsc. 2001 203 246–257

    Article  CAS  PubMed  Google Scholar 

  29. J. Siegel, D. S. Elson, S. E. D. Webb, D. Parsons-Karavassilis, S. Leveque-Fort, M. J. Cole, M. J. Lever, P. M. W. French, M. A. A. Neil, R. Juškaitis, L. O. D. Sucharov and T., Wilson, Whole-field 5-D fluorescence microscopy combining lifetime and spectral resolution with optical sectioning Opt. Lett. 2001 26 1338–1340

    Article  CAS  PubMed  Google Scholar 

  30. K. Suhling, J. Siegel, D. Phillips, P. M. W. French, S. Lévêque-Fort, S. E. D. Webb and D. M., Davis, Imaging the environment of green fluorescent protein Biophys. J. 2002 83 3589–3595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. D. Toptygin, R. S. Savtchenko, N. D. Meadow, S. Roseman and L., Brand, Effect of the solvent refractive index on the excited-state lifetime of a single tryptophan residue in a protein J. Chem. Phys. B 2002 106 3724–3734

    Article  CAS  Google Scholar 

  32. D. M., Davis, Assembly of the immunological synapse for T cells and NK cells Trends Immunol. 2002 23 356–363

    Article  CAS  PubMed  Google Scholar 

  33. B. Treanor, P. Lanigan, K. Suhling, M. Neil, D. Phillips, D. M. Davis and P. M. W. French, Probing the microenvironment of proteins by Fluorescence Lifetime Imaging, submitted for publication

  34. L. Stryer and R. P., Haugland, Energy transfer: a spectroscopic ruler Proc. Natl. Acad. Sci. USA 1967 58 719–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. E. A. Jares-Erijman and T. M., Jovin, FRET Imaging Nat. Biotechnol. 2003 21 1387–1395

    Article  CAS  PubMed  Google Scholar 

  36. A. G. Harpur, F. S. Wouters and P. I., Bastiaens, Imaging FRET between spectrally similar GFP molecules in single cells Nat. Biotechnol. 2001 19 167–169

    Article  CAS  PubMed  Google Scholar 

  37. R. Richards-Kortum and E. Sevick-Muraca Quantitative optical spectroscopy for tissue diagnosis Ann. Rev. Phys. Chem. 1996 47 555–606

    Article  CAS  Google Scholar 

  38. G. A. Wagnieres, W. M. Star and B. C., Wilson, In vivo fluorescence spectroscopy and imaging for oncological applications Photochem. Photobiol. 1998 68 5 603–632

    Article  CAS  PubMed  Google Scholar 

  39. T. Glanzmann, J. P. Ballini, H. van den Bergh and G., Wagnieres, Time-resolved spectrofluorometer for clinical tissue characterization during endoscopy Rev. Sci. Instrum 1999 70 4067–4077

    Article  CAS  Google Scholar 

  40. J. D. Pitts and M. A., Mycek, Design and development of a rapid acquisition laser-based fluorometer with simultaneous spectral and temporal resolution Rev. Sci. Instrum. 2001 72 3061–3072

    Article  CAS  Google Scholar 

  41. P. J. Tadrous, J. Siegel, P. M. French, S. Shousha, E. N. Lalani and G. W., Stamp, Fluorescence lifetime imaging of unstained tissues: early results in human breast cancer J. Pathol. 2003 199 309–317

    Article  PubMed  Google Scholar 

  42. L. Marcu, M. C. Fishbein, J. M. I. Maarek and W. S., Grundfest, Discrimination of human coronary artery atherosclerotic lipid-rich lesions by time-resolved laser-induced fluorescence spectroscopy Arterioscler. Thromb. Vasc. Biol. 2001 21 1244–1250

    Article  CAS  PubMed  Google Scholar 

  43. J. Mizeret, T. Stepinac, M. Hansroul, A. Studzinski, H. van den Bergh and G. Wagnières Instrumentation for real-time fluorescence lifetime imaging in endoscopy Rev. Sci. Instrum. 1999 70 4689

    Article  CAS  Google Scholar 

  44. G. Valentini, C. D’Andrea, D. Comelli, A. Pifferi, P. Taroni, A. Torricelli, R. Cubeddu, C. Battaglia, C. Consolandi, G. Salani, L. Rossi-Bernardi and G. De Bellis Time-resolved DNA-microarray reading by an intensified CCD for ultimate sensitivity Opt. Lett. 2000 25 1648–1650

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Elson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elson, D., Requejo-Isidro, J., Munro, I. et al. Time-domain fluorescence lifetime imaging applied to biological tissue. Photochem Photobiol Sci 3, 795–801 (2004). https://doi.org/10.1039/b316456j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b316456j

Navigation