Issue 4, 2004

Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements

Abstract

Flow cytometry is widely used for analyzing microparticles, such as cells and bacteria. In this paper, we report an innovative microsystem, in which several different optical elements (waveguides, lens and fiber-to-waveguide couplers) are integrated with microfluidic channels to form a complete microchip flow cytometer. All the optical elements, the microfluidic system, and the fiber-to-waveguide couplers were defined in one layer of polymer (SU-8, negative photoresist) by standard photolithography. With only a single mask procedure required, all the fabrication and packaging processes can be finished in one day. Polystyrene beads were measured in the microchip flow cytometer, and three signals (forward scattering, large angle scattering and extinction) were measured simultaneously for each bead. To our knowledge this is the first time forward scattered light and incident light extinction were measured in a microsystem using integrated optics. The microsystem can be applied for analyzing different kinds of particles and cells, and can easily be integrated with other microfluidic components.

Article information

Article type
Paper
Submitted
15 Jan 2004
Accepted
17 Mar 2004
First published
20 Apr 2004

Lab Chip, 2004,4, 372-377

Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements

Z. Wang, J. El-Ali, M. Engelund, T. Gotsæd, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter and A. Wolff, Lab Chip, 2004, 4, 372 DOI: 10.1039/B400663A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements