Skip to main content

Advertisement

Log in

Determination of the antibacterial efficacy of a new porphyrin-based photosensitizer against MRSA ex vivo

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Following extensive in vitro screening of new photosensitizers the purpose of the present study was to examine penetration as well as antibacterial efficacy of a lead photosensitizer against MRSA using an ex vivo porcine skin model. Two different applications were performed: (i) preincubation of bacteria in solution with a porphyrin-based photosensitizer XF73 and subsequent application on the ex vivo porcine skin; (ii) application of pure bacteria on the explants followed by an incubation with XF73 in a water-ethanol formulation for up to 60 min under occlusion. The localisation of XF73 was restricted to the stratum corneum. Different concentrations (0–10 μM) of XF73 and different incubation times (5-60 min) were used to determine phototoxicity against methicillin-resistant and methicillin-sensitive S. aureus, which was applied on the explants. Preincubation of S. aureus with 0.1 μM XF73 in solution prior to the application of these XF73-incubated bacteria on the skin demonstrates a higher efficacy (>3 log10) after irradiation. Antibacterial photodynamic inactivation resulted in a ~1 log10 (0.1 μM)-3.64 ± 0.035 (10 μM) log10 growth reduction independently of the antibiotic resistance pattern of used S. aureus strains. Irradiation of applied bacteria without photosensitizer incubation did not show any marked decrease (<1 log10) of bacteria cell number, indicating a significant phototoxicity of the XF73. Histological evaluations of untreated and treated skin areas upon irradiation within 24 h showed no significant degree of necrosis or apoptosis determined by TUNEL-assay indicating that the porcine skin is still vital. This study demonstrates that this XF73 porphyrin-based photosensitizer had concentration-dependent differences in killing efficacy of MRSA in comparison to skin cells using an ex vivo porcine skin model. The results described here imply that topical delivery of XF73 may be considered as a possible treatment in patients with superficial infections of the skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Barrett, Expert. Opin. Ther. Targets, 2004, 8, 515–519.

    Article  PubMed  Google Scholar 

  2. S. B. al-Masaudi, M. J. Day, A. D. Russell, J. Appl. Bacteriol., 1991, 70, 279–290.

    Article  CAS  PubMed  Google Scholar 

  3. E. E. Udo, W. B. Grubb, J. Antimicrob. Chemother., 1991, 27, 713–720.

    Article  CAS  PubMed  Google Scholar 

  4. S. K. Fridkin, Clin. Infect. Dis., 2001, 32, 108–115.

    Article  CAS  PubMed  Google Scholar 

  5. K. Hiramatsu, H. Hanaki, T. Ino, K. Yabuta, T. Oguri, F. C. Tenover, J. Antimicrob. Chemother., 1997, 40, 135–136.

    Article  CAS  PubMed  Google Scholar 

  6. M. C. Ploy, C. Grelaud, C. Martin, L. de Lumley, F. Denis, Lancet, 1998, 351, 1212.

    Article  CAS  PubMed  Google Scholar 

  7. T. L. Smith, M. L. Pearson, K. R. Wilcox, C. Cruz, M. V. Lancaster, B. Robinson-Dunn, F. C. Tenover, M. J. Zervos, J. D. Band, E. White, W. R. Jarvis, N. Engl. J. Med., 1999, 340, 493–501.

    Article  CAS  PubMed  Google Scholar 

  8. D. Sievert, M. Boulton, G. Stoltman, D. Johnson, M. Stobierski, F. Downes, P. Somsel, J. Rudrik, W. Brown, W. Hafeez, T. Lundstrom, E. Flanagan, R. Johnson, J. Mitchell, S. Chang, Morbidity and Mortality Weekly Report, Center of Disease Control, 2002, 51, 565–567.

    Google Scholar 

  9. K. Chiller, B. A. Selkin, G. J. Murakawa, J. Investig. Dermatol. Symp. Proc., 2001, 6, 170–174.

    Article  CAS  PubMed  Google Scholar 

  10. C. Carbon, J. Antimicrob. Chemother., 1999, 44, Suppl. A 31–36.

    Article  CAS  PubMed  Google Scholar 

  11. N. K. Veien, Br. J. Dermatol., 1998, 139, Suppl. 53 30–36.

    Article  PubMed  Google Scholar 

  12. S. Sharma, K. K. Verma, Indian. J. Pediatr., 2001, 68, Suppl. 3 S46–50.

    PubMed  Google Scholar 

  13. R. L. Nichols, J. Antimicrob. Chemother., 1999, 44, Suppl. A 19–23.

    Article  CAS  PubMed  Google Scholar 

  14. B. D. Cookson, J. Antimicrob. Chemother., 1998, 41, 11–18.

    Article  CAS  PubMed  Google Scholar 

  15. H. v. Tappeiner, A. Jodlbauer, Dtsch. Arch. Klin. Med., 1904, 80, 427–487.

    Google Scholar 

  16. R. M. Szeimies, P. Calzavara-Pinton, S. Karrer, B. Ortel, M. Landthaler, J. Photochem. Photobiol., B, 1996, 36, 213–219.

    Article  CAS  Google Scholar 

  17. R. Fink-Puches, A. Hofer, J. Smolle, H. Kerl, P. Wolf, J. Photochem. Photobiol., B, 1997, 41, 145–151.

    Article  CAS  Google Scholar 

  18. E. W. Jeffes, J. L. McCullough, G. D. Weinstein, P. E. Fergin, J. S. Nelson, T. F. Shull, K. R. Simpson, L. M. Bukaty, W. L. Hoffman, N. L. Fong, Arch. Dermatol., 1997, 133, 727–732.

    Article  CAS  PubMed  Google Scholar 

  19. C. S. Foote, Photochem. Photobiol., 1991, 54, 659.

    Article  CAS  PubMed  Google Scholar 

  20. B. Halliwell, J. M. Gutteridge, Lancet, 1984, 1, 1396–1397.

    Article  CAS  PubMed  Google Scholar 

  21. W. Baumler, C. Abels, S. Karrer, T. Weiss, H. Messmann, M. Landthaler, R. M. Szeimies, Br. J. Cancer, 1999, 80, 360–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Z. Malik, J. Hanania, Y. Nitzan, J. Photochem. Photobiol., B, 1990, 5, 281–293.

    Article  CAS  Google Scholar 

  23. M. Wainwright, J. Antimicrob. Chemother., 1998, 42, 13–28.

    Article  CAS  PubMed  Google Scholar 

  24. M. Wilson, J. Appl. Bacteriol., 1993, 75, 299–306.

    Article  CAS  PubMed  Google Scholar 

  25. T. Maisch, C. Bosl, R. M. Szeimies, N. Lehn, C. Abels, Antimicrob. Agents Chemother., 2005, 49, 1542–1552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. V. Schacht, K. Becker, R. M. Szeimies, C. Abels, Arch. Dermatol. Res., 2002, 294, 341–348.

    Article  PubMed  Google Scholar 

  27. R. F. Smith, B. L. Evans, Appl. Microbiol., 1972, 23, 293–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. M. R. Hamblin, T. Zahra, C. H. Contag, A. T. McManus, T. Hasan, J. Infect. Dis., 2003, 187, 1717–1725.

    Article  PubMed  Google Scholar 

  29. S. A. Lambrechts, T. N. Demidova, M. C. Aalders, T. Hasan, M. R. Hamblin, Photochem. Photobiol. Sci., 2005, 4, 503–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. T. N. Demidova, M. R. Hamblin, Antimicrob. Agents. Chemother., 2005, 49, 2329–2335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. D. A. Caminos, M. B. Spesia, E. N. Durantini, Photochem. Photobiol. Sci., 2006, 5, 56–65.

    Article  CAS  PubMed  Google Scholar 

  32. S. Messager, P. A. Goddard, P. W. Dettmar, J. Y. Maillard, J. Hosp. Infect., 2004, 58, 115–121.

    Article  CAS  PubMed  Google Scholar 

  33. S. Messager, A. C. Hann, P. A. Goddard, P. W. Dettmar, J. Y. Maillard, J. Appl. Microbiol., 2004, 97, 1149–1160.

    Article  CAS  PubMed  Google Scholar 

  34. J. S. Dysart, M. S. Patterson, Photochem. Photobiol. Sci., 2006, 5, 73–81.

    Article  CAS  PubMed  Google Scholar 

  35. I. Georgakoudi, M. G. Nichols, T. H. Foster, Photochem. Photobiol., 1997, 65, 135–144.

    Article  CAS  PubMed  Google Scholar 

  36. K. Langmack, R. Mehta, P. Twyman, P. Norris, J. Photochem. Photobiol., B, 2001, 60, 37–43.

    Article  CAS  Google Scholar 

  37. R. Sorensen, V. Iani, J. Moan, Photochem. Photobiol., 1998, 68, 835–840.

    Article  CAS  PubMed  Google Scholar 

  38. W. Meyer, R. Schwarz, K. Neurand, Curr. Probl. Dermatol., 1978, 7, 39–52.

    Article  CAS  PubMed  Google Scholar 

  39. G. A. Simon, H. I. Maibach, Skin Pharmacol. Appl. Skin Physiol., 2000, 13, 229–234.

    Article  CAS  PubMed  Google Scholar 

  40. A. C. Williams, B. W. Barry, Adv. Drug Deliv. Rev., 2004, 56, 603–618.

    Article  CAS  PubMed  Google Scholar 

  41. W. H. Boehncke, in Photodynamic Therapy and Fluorescence Diagnosis in Dermatology, ed. P. Calzavara-Pinton, S. RM and B. Ortel, Elsevier, Amsterdam, 2001, pp. 259–270.

  42. D. Hawkins, H. Abrahamse, Photomed. Laser Surg., 2005, 23, 251–259.

    Article  CAS  PubMed  Google Scholar 

  43. B. M. Magnusson, Y. G. Anissimov, S. E. Cross, M. S. Roberts, J. Invest. Dermatol., 2004, 122, 993–999.

    Article  CAS  PubMed  Google Scholar 

  44. J. D. Bos, M. M. Meinardi, Exp. Dermatol., 2000, 9, 165–169.

    Article  CAS  PubMed  Google Scholar 

  45. S. H. Battah, C. E. Chee, H. Nakanishi, S. Gerscher, A. J. MacRobert, C. Edwards, Bioconjug. Chem., 2001, 12, 980–988.

    Article  CAS  PubMed  Google Scholar 

  46. S. Gerscher, J. P. Connelly, G. M. Beijersbergen Van Henegouwen, A. J. MacRobert, P. Watt, L. E. Rhodes, Br. J. Dermatol., 2001, 144, 983–990.

    Article  CAS  PubMed  Google Scholar 

  47. Q. Peng, J. Moan, T. Warloe, V. Iani, H. B. Steen, A. Bjorseth, J. M. Nesland, J. Photochem. Photobiol., B, 1996, 34, 95–96.

    Article  CAS  Google Scholar 

  48. L. W. Bush, L. M. Benson, J. H. White, J. Clin. Microbiol., 1986, 24, 343–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. J. O. Hendley, K. M. Ashe, Antimicrob. Agents. Chemother., 1991, 35, 627–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Maisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maisch, T., Bosl, C., Szeimies, R.M. et al. Determination of the antibacterial efficacy of a new porphyrin-based photosensitizer against MRSA ex vivo. Photochem Photobiol Sci 6, 545–551 (2007). https://doi.org/10.1039/b614770d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b614770d

Navigation