Skip to main content

Advertisement

Log in

Real-time fluorescence monitoring of phenothiazinium photosensitizers and their anti-mycobacterial photodynamic activity against Mycobacterium bovis BCG in in vitro and in vivo models of localized infection

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

An objective was to explore the photodynamic activity of two cationic photosensitizers (PS) (benzo[a]phenothiazinium chloride and benzo[a]phenoselenazinium chloride) against Mycobacterium bovis BCG both in vitro and in a murine model of BCG-granuloma. The hypothesis being tested in this study was that cationic molecules could best interact with the negatively charged membrane of BCG as a model for mycobacterial infection. Cells in culture were incubated with various concentrations of PS and subsequently illuminated using a 635 nm diode laser. Dark- and light-induced killing profiles were generated as a function of fluence and dye concentration. In vivo, local injection of the PS into subcutaneous Mycobacterium-induced granuloma sites in murine model was followed by red light illumination of the same area. A special microscope was fabricated for real-time in vivo fluorescent microscopy to monitor EtNBS delivery to subcutaneous murine granulomata. Both PS demonstrated good in vitro antimycobacterial photodynamic activity with varying degrees of toxicity under dark conditions. Real time in vivo monitoring of benzophenothiazine chloride in the mouse model indicated that this fluorescent photosensitizer was delivered rapidly to the subcutaneous granuloma site. In vivo, photosensitizer specific dark- and photo-toxicities depended on the structure, concentration of the photosensitizer and the light dose utilized. Cationic phenothiazine photosensitizers are promising candidates for use in anti-mycobacterial PDT for localized diseases such as cutaneous and pulmonary granulomata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. R. Hamblin, and T. Hasan, Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem. Photobiol. Sci., 2004, 3, 436–450.

    Article  CAS  Google Scholar 

  2. G. P. Tegos, and M. R. Hamblin, Phenothiazinium antimicrobial photosensitizers are substrates of bacterial multidrug resistance pumps, Antimicrob. Agents Chemother., 2006, 50, 196–203.

    Article  CAS  Google Scholar 

  3. S. B. Brown, Clinical studies using antimicrobial PDT, in 11th World Congress of the International Photodynamic Association, Shanghai, China, 2007, p. 51.

    Google Scholar 

  4. K. O’Riordan, O. E. Akilov, and T. Hasan, The potential for photodynamic therapy in the treatment of localized infections, Photodiagn. Photodyn. Ther., 2005, 2, 247–262.

    Article  Google Scholar 

  5. T. Hasan, B. Ortel, A. C. E. Moor and and B. W. Pogue, Chapter 40. Photodynamic therapy of cancer, in Cancer Medicine, ed. H. Frei, BC Dekker, Inc., New York, NY, USA, 2003, pp. 605–622.

    Google Scholar 

  6. A. P. Castano, T. N. Demidova, and M. R. Hamblin, Mechanisms in photodynamic therapy: Part One - Photosensitizers, photochemistry and cellular localization, Photodiagn. Photodyn. Ther., 2004, 1, 279–293.

    Article  CAS  Google Scholar 

  7. G. Jori, and S. B. Brown, Photosensitized inactivation of microorganisms, Photochem. Photobiol. Sci., 2004, 3, 403–405.

    Article  CAS  Google Scholar 

  8. T. Maisch, R. M. Szeimies, G. Jori, and C. Abels, Antibacterial photodynamic therapy in dermatology, Photochem. Photobiol. Sci., 2004, 3, 907–917.

    Article  CAS  Google Scholar 

  9. S. B. Brown, Antimicrobial PDT: we have heard the theory, what about the practice? in The 11th Congress of the European Society for Photobiology, ed. J. Piette, Aix-les-Bains, France, 2005, p. 100.

    Google Scholar 

  10. K. O’Riordan, D. S. Sharlin, J. Gross, S. Chang, D. Errabelli, O. E. Akilov, S. Kosaka, G. J. Nau, and T. Hasan, Photoinactivation of Mycobacteria in vitro and in a new murine model of localized Mycobacterium bovis BCG-induced granulomatous infection, Antimicrob. Agents Chemother., 2006, 50, 1828–1834.

    Article  Google Scholar 

  11. M. S. Glickman, W. R. Jacobs, Jr., Microbial pathogenesis of Mycobacterium tuberculosis: dawn of a discipline, Cell, 2001, 104, 477–485.

    Article  CAS  Google Scholar 

  12. M. D. Iseman, MDR-TB and the developing world–a problem no longer to be ignored: the WHO announces ‘DOTS Plus’ strategy, Int. J. Tuberc. Lung Dis., 1998, 2, 867.

    CAS  PubMed  Google Scholar 

  13. E. Nathanson, R. Gupta, P. Huamani, V. Leimane, A. D. Pasechnikov, T. E. Tupasi, K. Vink, E. Jaramillo, and M. A. Espinal, Adverse events in the treatment of multidrug-resistant tuberculosis: results from the DOTS-Plus initiative, Int. J. Tuberc. Lung Dis., 2004, 8, 1382–1384.

    CAS  PubMed  Google Scholar 

  14. P. Godfrey-Faussett, and H. Ayles, Can we control tuberculosis in high H prevalence settings? Tuberculosis, 2003, 83, 68–76.

    Article  Google Scholar 

  15. P. Ravn, M. E. Munk, A. B. Andersen, B. Lundgren, L. N. Nielsen, T. Lillebaek, I. J. Soerensen, P. Andersen, and K. Weldingh, Reactivation of tuberculosis during immunosuppressive treatment in a patient with a positive QuantiFERON-RD1 test, Scand. J. Infect. Dis., 2004, 36, 499–501.

    Article  Google Scholar 

  16. M. I. Perelman, and V. P. Strelzov, Surgery for pulmonary tuberculosis, World J. Surg., 1997, 21, 457–467.

    Article  CAS  Google Scholar 

  17. C. E. Millson, M. Wilson, A. J. MacRobert, and S. G. Bown, Ex vivo treatment of gastric Helicobacter infection by photodynamic therapy, J. Photochem. Photobiol., B, 1996, 32, 59–65.

    Article  CAS  Google Scholar 

  18. M. Wainwright, The development of phenothiazinium photosensitisers, Photodiagn. Photodyn. Ther., 2005, 2, 263–272.

    Article  CAS  Google Scholar 

  19. L. Cincotta, D. Szeto, E. Lampros, T. Hasan, and A. H. Cincotta, Benzophenothiazine and benzoporphyrin derivative combination phototherapy effectively eradicates large murine sarcomas, Photochem. Photobiol., 1996, 63, 229–237.

    Article  CAS  Google Scholar 

  20. D. A. Phoenix, Z. Sayed, S. Hussain, F. Harris, and M. Wainwright, The phototoxicity of phenothiazinium derivatives against Escherichia coli and Staphylococcus aureus, FEMS Immunol. Med. Microbiol., 2003, 39, 17–22.

    Article  CAS  Google Scholar 

  21. M. N. Usacheva, M. C. Teichert, and M. A. Biel, The role of the methylene blue and toluidine blue monomers and dimers in the photoinactivation of bacteria, J. Photochem. Photobiol., B, 2003, 71, 87–98.

    Article  CAS  Google Scholar 

  22. M. Wainwright, D. A. Phoenix, S. L. Laycock, D. R. Wareing, and P. A. Wright, Photobactericidal activity of phenothiazinium dyes against methicillin-resistant strains of Staphylococcus aureus, FEMS Microbiol. Lett., 1998, 160, 177–181.

    Article  CAS  Google Scholar 

  23. M. Wainwright, D. A. Phoenix, J. Marland, D. R. Wareing, and F. J. Bolton, A study of photobactericidal activity in the phenothiazinium series, FEMS Immunol. Med. Microbiol., 1997, 19, 75–80.

    Article  CAS  Google Scholar 

  24. J. W. Foley, X. Song, T. N. Demidova, F. Jalil, and M. R. Hamblin, Synthesis and Properties of Benzo[a]phenoxazinium Chalcogen Analogues as Novel Broad-Spectrum Antimicrobial Photosensitizers, J. Med. Chem., 2006, 49, 7252.

    Article  CAS  Google Scholar 

  25. O. E. Akilov, S. Kosaka, K. O’Riordan, X. Song, M. Sherwood, T. J. Flotte, J. W. Foley, and T. Hasan, The Role of Photosensitizer Molecular Charge and Structure on the Efficacy of Photodynamic Therapy against Leishmania Parasites, Chem. Biol., 2006, 13, 839–847.

    Article  CAS  Google Scholar 

  26. L. Amaral, J. E. Kristiansen, M. Viveiros, and J. Atouguia, Activity of phenothiazines against antibiotic-resistant Mycobacterium tuberculosis: a review supporting further studies that may elucidate the potential use of thioridazine as anti-tuberculosis therapy, J. Antimicrob. Chemother., 2001, 47, 505–511.

    Article  CAS  Google Scholar 

  27. D. Ordway, M. Viveiros, C. Leandro, R. Bettencourt, J. Almeida, M. Martins, J. E. Kristiansen, J. Molnar, and L. Amaral, Clinical concentrations of thioridazine kill intracellular multidrug-resistant Mycobacterium tuberculosis, Antimicrob. Agents Chemother., 2003, 47, 917–922.

    Article  CAS  Google Scholar 

  28. Y. Zhang, The magic bullets and tuberculosis drug targets, Annu. Rev. Pharmacol. Toxicol., 2005, 45, 529–564.

    Article  CAS  Google Scholar 

  29. F. A. Salih, N. K. Kaushik, P. Sharma, G. V. Choudary, P. S. Murthy, and T. A. Venkitasubramanian, Calmodulin-like activity in mycobacteria, Indian J. Biochem. Biophys., 1991, 28, 491–495.

    CAS  PubMed  Google Scholar 

  30. J. T. Groves, S. M. Lindenauer, B. J. Haywood, J. A. Knol, and J. S. Schultz, Synthesis of seleno-toluidine blue, J. Med. Chem., 1974, 17, 902–904.

    Article  CAS  Google Scholar 

  31. M. J. Hickey, T. M. Arain, R. M. Shawar, D. J. Humble, M. H. Langhorne, J. N. Morgenroth, and C. K. Stover, Luciferase in vivo expression technology: use of recombinant mycobacterial reporter strains to evaluate antimycobacterial activity in mice, Antimicrob. Agents Chemother., 1996, 40, 400–407.

    Article  CAS  Google Scholar 

  32. K. I. Moller, B. Kongshoj, P. A. Philipsen, V. O. Thomsen, and H. C. Wulf, How Finsen’s light cured lupus vulgaris, Photodermatol. Photoimmunol. Photomed., 2005, 21, 118–124.

    Article  CAS  Google Scholar 

  33. S. G. Bown, and A. Z. Rogowska, New photosensitizers for photodynamic therapy in gastroenterology, Can. J. Gastroenterol., 1999, 13, 389–392.

    Article  CAS  Google Scholar 

  34. S. Kosaka, O. E. Akilov, K. O’Riordan, and T. Hasan, A mechanistic study of d-aminolevulinic acid–based photodynamic therapy for cutaneous leishmaniasis, J. Invest. Dermatol., 2007, 127, 1546–1549.

    Article  CAS  Google Scholar 

  35. O. E. Akilov, S. Kosaka, K. O’Riordan, and T. Hasan, Parasiticidal effect of delta-aminolevulinic acid–based photodynamic therapy for cutaneous leishmaniasis is indirect and mediated through the killing of the host cells, Exp. Dermatol., 2007, 16, 651–660.

    Article  CAS  Google Scholar 

  36. L. Cincotta, J. W. Foley, and A. H. Cincotta, Phototoxicity, redox behavior, and pharmacokinetics of benzophenoxazine analogues in EMT-6 murine sarcoma cells, Cancer Res., 1993, 53, 2571–2580.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayyaba Hasan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Riordan, K., Akilov, O.E., Chang, S.K. et al. Real-time fluorescence monitoring of phenothiazinium photosensitizers and their anti-mycobacterial photodynamic activity against Mycobacterium bovis BCG in in vitro and in vivo models of localized infection. Photochem Photobiol Sci 6, 1117–1123 (2007). https://doi.org/10.1039/b707962a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b707962a

Navigation