Skip to main content
Log in

The influence of hypoxia on bioluminescence in luciferase-transfected gliosarcoma tumor cells in vitro

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Firefly luciferase catalyzes the emission of light from luciferin in the presence of oxygen and adenosine triphosphate. This bioluminescence is commonly employed in imaging mode to monitor tumor growth and treatment responses in vivo. A potential concern is that, since solid tumors are often hypoxic, either constitutively and/or as a result of treatment, the oxygen available for the bioluminescence reaction could be reduced to limiting levels, leading to underestimation of the actual number of luciferase-labeled cells during in vivo experiments. We present studies of the oxygen dependence of bioluminescence in vitro in rat 9 L gliosarcoma cells tagged with the firefly luciferase gene (9Lluc). We demonstrate that the bioluminescence signal decreases at pO2 ⩽ 5%, falling by approximately 50% at 0.2% pO2. Further experiments showed that the critical threshold for the initiation of metabolic depression in these cells was around 5%. Below this level, the decrease of oxygen saturation was followed by a decrease in intracellular ATP due to the reduction of mitochondrial membrane potential. Hence, the data suggest that the decrease of intracellular ATP level in vitro is the limiting factor for bioluminescence reaction and so is responsible for the reduction of bioluminescence signal in 9Lluc cells in acute hypoxia, rather than luciferase expression or oxygen itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes and References

  1. G. B. Sala-Newby, C. M. Thomson and A. K. Campbell, Sequence and biochemical similarities between the luciferases of the glow-worm Lampyris noctiluca and the firefly Photinus pyralis, Biochem. J., 1996, 1, 761–7.

    Article  Google Scholar 

  2. W. D. McElroy and M. DeLuca, Bioluminescence and Chemilumines-cence, Academic Press, New York, 1981, pp. 179–86.

    Book  Google Scholar 

  3. C. H. Contag and B. D. Ross, It’s not just about anatomy: In vivo bioluminescence imaging as an eyepiece into biology, J. Magn. Reson. Imaging, 2002, 16, 378–87.

    Article  Google Scholar 

  4. A. Rehemtulla, L. D. Stegman, S. J. Cardozo, S. Gupta, D. E. Hall, C. H. Contag and B. D. Ross, Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging, Neoplasia, 2000, 2, 491–495.

    Article  CAS  Google Scholar 

  5. E. H. Moriyama, S. K. Bisland, L. Lilge and B. C. Wilson, Biolumi-nescence Imaging of the Response of Rat Gliosarcoma to ALA-PpIX Mediated Photodynamic Therapy, Photochem. Photobiol., 2004, 80, 242–9.

    Article  CAS  Google Scholar 

  6. J. T. Beckham, M. A. Mackanos, C. Crooke, T. Takahashi, C. O’Connell-Rodwell, C. H. Contag and E. D. Jansen, Assessment of cellular response to thermal laser injury through bioluminescence imaging of heat shock protein 70, Photochem. Photobiol., 2004, 79, 76–85.

    Article  CAS  Google Scholar 

  7. B. W. Rice, M. D. Cable and M. B. Nelson, In vivo imaging of light-emitting probes, J. Biomed. Opt., 2001, 6, 432–40.

    Article  CAS  Google Scholar 

  8. T. M. Sitnik, J. A. Hampton and B. W. Henderson, Reduction of tumour oxygenation during and after photodynamic therapy in vivo: effects of fluence rate, Br. J. Cancer, 1998, 77, 1386–94.

    Article  CAS  Google Scholar 

  9. B. Chen, B. W. Pogue, X. Zhou, J. A. O’Hara, N. Solban, E. Demidenko, P. J. Hoopes and T. Hasan, Effect of tumor host microenvironment on photodynamic therapy in a rat prostate tumor model, Clin. Cancer Res., 2005, 15, 720–7.

    Google Scholar 

  10. I. P. van Geel, H. Oppelaar, Y. G. Oussoren and F. A. Stewart, Changes in perfusion of mouse tumours after photodynamic therapy, Int. J. Cancer, 1994, 15, 224–8.

    Article  Google Scholar 

  11. J. W. Hastings, Oxygen concentration and bioluminescence intensity, J. Cell. Comp. Physiol., 1952, 39, 1–30.

    Article  CAS  Google Scholar 

  12. I. Cecic, D. A. Chan, P. D. Sutphin, P. Ray, S. S. Gambhir, A. J. Giaccia and E. E. Graves, Oxygen sensitivity of reporter genes: implications for preclinical imaging of tumor hypoxia, Mol. Imaging., 2007, 6, 219–28.

    Article  CAS  Google Scholar 

  13. H. Shapiro, The light intensity of luminous bacteria as a function of O2 pressure, J. Cell. Comp. Physiol., 1934, 4, 313–28.

    Article  CAS  Google Scholar 

  14. D. W. Whillans and A. M. Rauth, An experimental and analytical study of oxygen depletion in stirred cell suspensions, Radiation Res., 1980, 84, 97–114.

    Article  CAS  Google Scholar 

  15. M. Ebert and A. Howard, Current Topics in Radiation Research, North-Holland Publishing Company, London, vol. V, 1969.

  16. E. C. Slater, Application of inhibitors and uncouplers for a study of oxidative phosphorylation, Methods Enzymol., 1967, 10, 48–57.

    Article  CAS  Google Scholar 

  17. G. S. Timmins, F. J. Robb, C. M. Wilmot, S. K. Jackson and H. M. Swartz, Firefly flashing is controlled by gating oxygen to light-emitting cells, J. Exp. Biol., 2001, 204, 2795–801.

    Article  CAS  Google Scholar 

  18. R. Rampling, G. Cruickshank, A. D. Lewis, S. A. Fitzsimmons and P. Workman, Direct measurement of pO2 distribution and bioreductive enzymes in human malignant brain tumors, Int. J. Radiat. Oncol., Biol., Phys., 1994, 29, 427–31.

    Article  CAS  Google Scholar 

  19. P. W. Hochachka, L. T. Buck, C. J. Doll and S. C. Land, Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack, Proc. Natl. Acad. Sci. USA, 1996, 93, 9493–8.

    Article  CAS  Google Scholar 

  20. O. Warburg, The Metabolism of Tumors, London, Constable Co. Ltd., 1930.

    Google Scholar 

  21. X. L. Zu and M. Guppy, Cancer metabolism: facts, fantasy, and fiction, Biochem. Biophys. Res. Commun., 2004, 488, 119–133.

    Google Scholar 

  22. C. Koumenis, C. Naczki, M. Koritzinsky, S. Rastani, A. Diehl, N. Sonenberg, A. Koromilas and B. G. Wouters, Regulation of protein synthesis by hypoxia via activation of the endoplasmatic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2a, Mol. Cell. Biol., 2002, 22, 7405–16.

    Article  CAS  Google Scholar 

  23. S. Coutier, L. N. Bezdetnaya, T. H. Foster, R. M. Parache and F. Guillemin, Effect of irradiation fluence rate on the efficacy of photody-namic therapy and tumor oxygenation in meta-tetra (hydroxyphenyl) chlorin (mTHPC)-sensitized HT29 Xenografts in nude mice, Radiat. Res., 2002, 158, 339–45.

    Article  CAS  Google Scholar 

  24. V. H. Fingar, P. K. Kik, P. S. Haydon, P. B. Cerrito, M. Tseng, E. Abang and T. J. Wieman, Analysis of acute vascular damage after photodynamic therapy using benzoporphyrin derivative (BPD), Br. J. Cancer, 1999, 79, 1702–8.

    Article  CAS  Google Scholar 

  25. V. H. Fingar, T. J. Wieman and K. W. Doak, Mechanistic studies of PDT-induced vascular damage: evidence that eicosanoids mediate this process, Int. J. Radiat. Biol., 1991, 60, 303–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian C. Wilson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moriyama, E.H., Niedre, M.J., Jarvi, M.T. et al. The influence of hypoxia on bioluminescence in luciferase-transfected gliosarcoma tumor cells in vitro. Photochem Photobiol Sci 7, 675–680 (2008). https://doi.org/10.1039/b719231b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b719231b

Navigation