Skip to main content
Log in

Photosensitized production of singlet oxygen: spatially-resolved optical studies in single cells

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Singlet molecular oxygen, O2(a1Δg), can be created in photosensitized experiments with sub-cellular spatial resolution in a single cell. This cytotoxic species can subsequently be detected by its 1270 nm phosphorescence (a1Δg→ X3Σg). Cellular responses to the creation of singlet oxygen can be monitored using viability assays. Time- and spatially-resolved optical measurements of both singlet oxygen and its precursor, the excited state sensitizer, reflect the complex and dynamic morphology of the cell. These experiments help elucidate photoinduced, oxygen-dependent events that compromise cell function and ultimately lead to cell death. In this perspective, recent work on the photosensitized production and detection of singlet oxygen in single cells is summarized, highlighting the advantages and current limitations of this unique experimental approach to study an old problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. S. Foote, Mechanisms of photosensitized oxidation, Science, 1968, 162, 963–970.

    Article  CAS  PubMed  Google Scholar 

  2. C. S. Foote and E. L. Clennan, Properties and Reactions of Singlet Dioxygen in Active Oxygen in Chemistry, ed. C. S. Foote, J. S. Valentine, A. Greenberg and J. F. Liebman, Chapman and Hall, London, 1995, pp. 105–140.

  3. R. C. Straight and J. D. Spikes, Photosensitized Oxidation of Biomolecules, in Singlet Oxygen, ed. A. A. Frimer, CRC Press, Boca Raton, 1985, vol. 4, pp. 91–143.

    CAS  Google Scholar 

  4. H. K. Ledford and K. K. Niyogi, Singlet oxygen and photo-oxidative stress management in plants and algae, Plant Cell Environ., 2005, 28, 1037–1045.

    Article  CAS  Google Scholar 

  5. R. W. Redmond and I. E. Kochevar, Spatially-Resolved Cellular Responses to Singlet Oxygen, Photochem. Photobiol., 2006, 82, 1178–1186.

    Article  CAS  PubMed  Google Scholar 

  6. I. E. Kochevar, M. C. Lynch, S. Zhuang and C. R. Lambert, Singlet oxygen, but not oxidizing radicals, induces apoptosis in HL-60 cells, Photochem. Photobiol., 2000, 72, 548–553.

    Article  CAS  PubMed  Google Scholar 

  7. K. R. Weishaupt, C. J. Gomer and T. J. Dougherty, Identification of Singlet Oxygen as the Cytotoxic Agent in Photo-Inactivation of a Murine Tumor., Cancer Res., 1976, 36, 2326–2329.

    CAS  PubMed  Google Scholar 

  8. K. Plaetzer, T. Kiesslich, T. Verwanger and B. Krammer, The Modes of Cell Death Induced by PDT: An Overview, Med. Laser Appl., 2003, 18, 7–19.

    Article  Google Scholar 

  9. J. Arnbjerg, M. J. Paterson, C. B. Nielsen, M. Jørgensen, O. Christiansen and P. R. Ogilby, One- and Two-Photon Photosensitized Singlet Oxygen Production: Characterization of Aromatic Ketones as Sensitizer Standards, J. Phys. Chem. A, 2007, 111, 5756–5767.

    Article  CAS  PubMed  Google Scholar 

  10. J. Arnbjerg, A. Jiménez-Banzo, M. J. Paterson, S. Nonell, J. I. Borrell, O. Christiansen and P. R. Ogilby, Two-Photon Absorption in Tetraphenylporphycenes: Are porphycenes better candidates than porphyrins for providing optimal optical properties for two-photon photodynamic therapy?, J. Am. Chem. Soc., 2007, 129, 5188–5199.

    Article  CAS  PubMed  Google Scholar 

  11. A. Baker and J. R. Kanofsky, Time-resolved studies of singlet oxygen emission from L1210 leukemia cells labeled with 5-(N-hexadecanoyl)amino eosin. A comparison with a one-dimensional model of singlet oxygen diffusion and quenching, Photochem. Photobiol., 1993, 57, 720–727.

    Article  CAS  PubMed  Google Scholar 

  12. M. Niedre, M. S. Patterson and B. C. Wilson, Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo., Photochem. Photobiol., 2002, 75, 382–391.

    Article  CAS  PubMed  Google Scholar 

  13. A. Jiménez-Banzo, M. L. Sagrista, M. Mora and S. Nonell, Kinetics of Singlet Oxygen Photosensitization in Human Skin Fibroblasts, Free Radical Biol. Med., 2008, 44, 1926–1934.

    Article  CAS  Google Scholar 

  14. J. Baier, M. Maier, R. Engl, M. Landthaler, W. Bäumler, Time-Resolved Investigations of Singlet Oxygen Luminescence in Water, in Phosphatidylcholine, and in Aqueous Suspensions of Phosphatidylcholine or HT29 Cells, J. Phys. Chem. B, 2005, 109, 3041–3046.

    Article  CAS  PubMed  Google Scholar 

  15. S. Oelckers, T. Ziegler, I. Michler, B. Röder, Time-resolved detection of singlet oxygen luminescence in red-cell ghost suspensions: concerning a signal component that can be attributed to 1O2 luminescence from the inside of a native membrane., J. Photochem. Photobiol., B, 1999, 53, 121–127.

    Article  CAS  Google Scholar 

  16. I. Zebger, J. W. Snyder, L. K. Andersen, L. Poulsen, Z. Gao, J. D. C. Lambert, U. Kristiansen and P. R. Ogilby, Direct Optical Detection of Singlet Oxygen from a Single Cell, Photochem. Photobiol., 2004, 79, 319–322.

    Article  CAS  PubMed  Google Scholar 

  17. E. Skovsen, J. W. Snyder, J. D. C. Lambert and P. R. Ogilby, Lifetime and Diffusion of Singlet Oxygen in a Cell, J. Phys. Chem. B, 2005, 109, 8570–8573.

    Article  CAS  PubMed  Google Scholar 

  18. J. W. Snyder, E. Skovsen, J. D. C. Lambert and P. R. Ogilby, Subcellular, time-resolved studies of singlet oxygen in single cells, J. Am. Chem. Soc., 2005, 127, 14558–14559.

    Article  CAS  PubMed  Google Scholar 

  19. J. W. Snyder, E. Skovsen, J. D. C. Lambert, L. Poulsen and P. R. Ogilby, Optical Detection of Singlet Oxygen from Single Cells, Phys. Chem. Chem. Phys., 2006, 8, 4280–4293.

    Article  CAS  PubMed  Google Scholar 

  20. S. Hatz, J. D. C. Lambert and P. R. Ogilby, Measuring the Lifetime of Singlet Oxygen in a Single Cell: Addressing the Issue of Cell Viability, Photochem. Photobiol. Sci., 2007, 6, 1106–1116.

    Article  CAS  PubMed  Google Scholar 

  21. E. Skovsen, J. W. Snyder and P. R. Ogilby, Two-photon singlet oxygen microscopy: the challenges of working with single cells, Photochem. Photobiol., 2006, 82, 1187–1197.

    Article  CAS  PubMed  Google Scholar 

  22. J. W. Snyder, I. Zebger, Z. Gao, L. Poulsen, P. K. Frederiksen, E. Skovsen, S. P. McIlroy, M. Klinger, L. K. Andersen and P. R. Ogilby, Singlet Oxygen Microscope: From Phase-Separated Polymers to Single Biological Cells, Acc. Chem. Res., 2004, 37, 894–901.

    Article  CAS  PubMed  Google Scholar 

  23. J. Arnbjerg, M. Johnsen, P. K. Frederiksen, S. E. Braslavsky and P. R. Ogilby, Two-photon photosensitized production of singlet oxygen: Optical and optoacoustic characterization of absolute two-photon absorption cross sections for standard sensitizers in different solvents, J. Phys. Chem. A, 2006, 110, 7375–7385.

    Article  CAS  PubMed  Google Scholar 

  24. S. Rello, J. C. Stockert, V. Moreno, A. Gámez, M. Pacheco, A. Juarranz, M. Cañete and A. Villanueva, Morphological criteria to distinguish cell death induced by apoptotic and necrotic treatments, Apoptosis, 2005, 10, 201–208.

    Article  CAS  PubMed  Google Scholar 

  25. Z. Darzynkiewicz, G. Juan, X. Li, W. Gorczyca, T. Murakami and F. Traganos, Cytometry in Cell Necrobiology: Analysis of Apoptosis and Accidental Cell Death (Necrosis), Cytometry, 1997, 27, 1–20.

    Article  CAS  PubMed  Google Scholar 

  26. L. V. Johnson, M. L. Walsh and L. B. Chen, Localization of Mitochondria in Living Cells with Rhodamine 123, Proc. Natl. Acad. Sci. USA, 1980, 77, 990–994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. S.-M. Chiu and N. L. Oleinick, Dissociation of mitochondrial depolarization from cytochrome c release during apoptosis induced by photodynamic therapy, Br. J. Cancer, 2001, 84, 1099–1106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. M.-H. Teiten, S. Marchal, M. A. D’Hallewin, F. Guillemin and L. Bezdetnaya, Primary Photodamage Sites and Mitochonrial Events after Foscan Photosensitization of MCF-7 Human Breast Cancer Cells, Photochem. Photobiol., 2003, 78, 9–14.

    Article  CAS  PubMed  Google Scholar 

  29. M. H. Heggeness, M. Simon and S. J. Singer, Association of Mitochondria with Microtubules in Cultured Cells, Proc. Natl. Acad. Sci. USA, 1978, 75, 3863–3866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. J. W. M. Lagerberg, J. Vanderwal, P. Charlesworth, T. G. Truscott, J. von der Zee, H. Schneckenburger, T. M. A. R. Dubbelman, Influence of Rhodamine 123 on the Photosensitizing Properties of Porphyrins, Free Radical Biol. Med., 1996, 21, 181–188.

    Article  CAS  Google Scholar 

  31. S. Hatz, L. Poulsen and P. R. Ogilby, Time-resolved Singlet Oxygen Phosphorescence Measurements from Photosensitized Experiments in Single Cells: Effects of Oxygen Diffusion and Oxygen Concentration, Photochem. Photobiol., 2008, 84, 1284–1290.

    Article  CAS  PubMed  Google Scholar 

  32. K. Uchida, K. Matsuyama, K. Tanaka and K. Doi, Diffusion coefficient for O2 in plasma and mitochondrial membranes of rat cardiomyocytes, Respiration Physiol., 1992, 90, 351–362.

    Article  CAS  Google Scholar 

  33. J. W. Snyder, J. D. C. Lambert and P. R. Ogilby, 5,10,15,20-Tetrakis(N-Methyl-4-Pyridyl)-21H,23H-Porphine (TMPyP) as a Sensitizer for Singlet Oxygen Imaging in Cells: Characterizing the Irradiation-Dependent Behavior of TMPyP in a Single Cell, Photochem. Photobiol., 2006, 82, 177–184.

    Article  CAS  PubMed  Google Scholar 

  34. I. A. Patito, C. Rothmann and Z. Malik, Nuclear Transport of Photosensitizers during Photosensitization and Oxidative Stress, Biol. Cell, 2001, 93, 285–291.

    Article  CAS  PubMed  Google Scholar 

  35. A. Rück, T. Köllner, A. Dietrich, W. Strauss and H. Schneckenburger, Fluorescence Formation during Photodynamic Therapy in the Nucleus of Cells Incubated with Cationic and Anionic Water-Soluble Photosensitizers, J. Photochem. Photobiol,, B, 1992, 12, 403–412.

    Article  Google Scholar 

  36. I. J. MacDonald, J. Morgan, D. A. Bellnier, G. M. Paszkiewicz, J. E. Whitaker, D. J. Litchfield and T. J. Dougherty, Subcellular Localization Patterns and Their Relationship to Photodynamic Activity of Pyropheophorbide-a Derivatives, Photochem. Photobiol., 1999, 70, 789–797.

    Article  CAS  PubMed  Google Scholar 

  37. X. Sun and W. N. Leung, Photodynamic Therapy with Pyropheophorbide-a Methyl Ester in Human Lung Carcinoma Cancer Cell: Efficacy, Localization and Apoptosis, Photochem. Photobiol., 2002, 75, 644–651.

    Article  CAS  PubMed  Google Scholar 

  38. H. Brockman, M. N. Haschad, K. Maier and F. Pohl, Hypericin, the photodynamically active pigment from Hypericum perforatum, Naturwissenschaften, 1939, 27, 550–555.

    Article  Google Scholar 

  39. P. Agostinis, A. Vantieghem, W. Merlevede, P. A. M. de Witte, Hypericin in cancer treatment: more light on the way, Int. J. Biochem. Cell Biol., 2002, 34, 221–241.

    Article  CAS  PubMed  Google Scholar 

  40. N. Duran and P. S. Song, Hypericin and its photodynamic action, Photochem. Photobiol., 1986, 43, 677–680.

    Article  CAS  PubMed  Google Scholar 

  41. G. Lavie, F. Valentine, B. Levin, Y. Mazur, G. Gallo, D. Lavie, L. Weiner and D. Meruelo, Studies on the mechanisms of action of the antiretroviral agents hypericin and pseudohypericin, Proc. Natl. Acad. Sci. USA, 1989, 86, 5963–5967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Z. Diwu, Novel therapeutic and diagnostic applications of hypocrellins and hypericins, Photochem. Photobiol., 1995, 61, 529–539.

    Article  CAS  PubMed  Google Scholar 

  43. B. Ehrenberg, J. L. Anderson and C. S. Foote, Kinetics and yield of singlet oxygen photosensitized by hypericin in organic and biological media, Photochem. Photobiol., 1998, 68, 135–140.

    Article  CAS  PubMed  Google Scholar 

  44. S. Kascakova, Z. Nadova, A. Mateasik, J. Mikes, V. Huntosova, M. Refregiers, F. Sureau, J.-C. Maurizot, P. Miskovsky and D. Jancura, High Level of Low-density Lipoprotein Receptors Enhance Hypericin Uptake by U-87 MG Cells in the Presence of LDL, Photochem. Photobiol., 2008, 84, 120–127.

    CAS  PubMed  Google Scholar 

  45. B. C. Wilson, M. Olivo and G. Singh, Subcellular Localization of Photofrin and Aminolevulinic Acid and Photodynamic Cross-Resistance in Vitro in Radiation-Induced Fibrosarcoma Cells Sensitive or Resistant to Photofrin-Mediated Photodynamic Therapy, Photochem. Photobiol., 1997, 65, 166–176.

    Article  CAS  PubMed  Google Scholar 

  46. K. Tabata, S.-I. Ogura and I. Okura, Photodynamic Efficiency of Protoporphyrin IX: Comparison of Endogenous Protoporphyrin IX Induced by 5-Aminolevulinic Acid and Exogenous Porphyrin IX, Photochem. Photobiol., 1997, 66, 842–846.

    Article  CAS  Google Scholar 

  47. E. G. Mik, J. Stap, M. Sinaasappel, J. F. Beek, J. A. Aten, T. G. van Leeuwen and C. Ince, Mitochondrial PO2 measured by delayed fluorescence of endogenous protoporphyrin IX, Nature Methods, 2006, 3, 939–945.

    Article  CAS  PubMed  Google Scholar 

  48. N. L. Oleinick, R. L. Morris and I. Belichenko, The Role of Apoptosis in Response to Photodynamic Therapy: What, where, why, and how, Photochem. Photobiol. Sci., 2002, 1, 1–21.

    Article  CAS  PubMed  Google Scholar 

  49. E. Cló, J. W. Snyder, P. R. Ogilby and K. V. Gothelf, Control and Selectivity of Photosensitized Singlet Oxygen Production: Challenges in Complex Biological Systems, ChemBioChem, 2007, 8, 475–481.

    Article  PubMed  CAS  Google Scholar 

  50. N. N. Kruk, B. M. Dzhagarov, V. A. Galievsky, V. S. Chirvony, P. -Y. Turpin, Photophysics of the cationic 5,10,15,20-tetrakis-(4-N-methylpyridyl) porphyrin bound to DNA, [poly(dA-dT)]2 and [poly(dG-dC)]2: Interaction with molecular oxygen studied by porphyrin triplet-triplet absorption and singlet oxygen luminescence., J. Photochem. Photobiol., B, 1998, 42, 181–190.

    Article  CAS  Google Scholar 

  51. I. Borissevitch and S. Gandini, Photophysical studies of excited state characteristics of meso-tetrakis-(4-N-methylpyridiniumyl) porphyrin bound to DNA, J. Photochem. Photobiol., B, 1998, 43, 112–120.

    Article  CAS  Google Scholar 

  52. J. W. Dobrucki, Interaction of oxygen-sensitive luminescent probes Ru(phen)32+ and Ru(bipy)32+ with animal and plant cells in vitro. Mechanism of phototoxicity and conditions for non-invasive oxygen measurements, J. Photochem. Photobiol,, B, 2001, 65, 136–144.

    Article  CAS  Google Scholar 

  53. M. K. Kuimova, G. Yahioglu, J. A. Levitt and K. Suhling, Molecular Rotor Measures Viscosity of Live Cells via Fluorescence Lifetime Imaging, J. Am. Chem. Soc., 2008, 130, 6672–6673.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter R. Ogilby.

Additional information

On leave from the Department of Chemistry, Imperial College, London, UK.

On leave from the Department of Biophysics, P. J. Safarik University, Kosice, Slovakia.

The authors reflect the diversity and breadth found in the Center for Oxygen Microscopy and Imaging (COMI). Thomas Breitenbach, Marina Kuimova, and Sonja Hatz are postdoctoral associates, each with expertise that covers disciplines ranging from cell biology to physical chemistry. Peter Gbur, Nickolass Schack, and Brian Pedersen are PhD students whose projects cover aspects of singlet-oxygen-mediated cell death. Lars Poulsen is an assistant professor who has contributed to the design and implementation of the COMI microscopes. John Lambert is a professor who brings expertise in the handling of cells. COMI was established by Professor Peter R. Ogilby with the intent of providing an interdisciplinary facility where scientists could examine oxygen-dependent problems, particularly those involving singlet oxygen, in systems ranging from liquid solvents and glassy polymers to single biological cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breitenbach, T., Kuimova, M.K., Gbur, P. et al. Photosensitized production of singlet oxygen: spatially-resolved optical studies in single cells. Photochem Photobiol Sci 8, 442–452 (2009). https://doi.org/10.1039/b809049a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b809049a

Navigation