Issue 12, 2009

On the basic computational structure of gene regulatory networks

Abstract

Gene regulatory networks constitute the first layer of the cellular computation for cell adaptation and surveillance. In these webs, a set of causal relations is built up from thousands of interactions between transcription factors and their target genes. The large size of these webs and their entangled nature make it difficult to achieve a global view of their internal organisation. Here, this problem has been addressed through a comparative study of Escherichia coli, Bacillus subtilis and Saccharomyces cerevisiae gene regulatory networks. We extract the minimal core of causal relations, uncovering the hierarchical and modular organisation from a novel dynamical/causal perspective. Our results reveal a marked top-down hierarchy containing several small dynamical modules for E. coli and B. subtilis. Conversely, the yeast network displays a single but large dynamical module in the middle of a bow-tie structure. We found that these dynamical modules capture the relevant wiring among both common and organism-specific biological functions such as transcription initiation, metabolic control, signal transduction, response to stress, sporulation and cell cycle. Functional and topological results suggest that two fundamentally different forms of logic organisation may have evolved in bacteria and yeast.

Graphical abstract: On the basic computational structure of gene regulatory networks

Supplementary files

Article information

Article type
Paper
Submitted
11 Mar 2009
Accepted
05 Jun 2009
First published
21 Jul 2009

Mol. BioSyst., 2009,5, 1617-1629

On the basic computational structure of gene regulatory networks

C. Rodríguez-Caso, B. Corominas-Murtra and R. V. Solé, Mol. BioSyst., 2009, 5, 1617 DOI: 10.1039/B904960F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements