Skip to main content

Advertisement

Log in

Non-aggregated Ga(III)-phthalocyanines in the photodynamic inactivatio planktonic and biofilm cultures of pathogenic microorganisms

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Visible light-absorbing cationic water-soluble gallium(III) phthalocyanines (GaPcs) peripherally substituted with four and eight methylpyridyloxy groups were synthesized and investigated as antimicrobial photodynamic sensitizers. The inserted large gallium ion in the phthalocyanine ligand is axially substituted by one hydroxyl group which prevents aggregation of the complexes in aqueous solution. The cellular uptake and the photodynamic activity for the representative strains of the Gram positive bacteria methicillin-resistant Staphylococcus aureus(MRSA) and Enterococcus faecalis, of the Gram negative bacterium Pseudomonas aeruginosa and of the fungus Candida albicans in planktonic phase were studied. The tetra-methylpyridyloxy substituted GaPc1 showed lower cellular uptake compared to the octa-methylpyridyloxy substituted GaPc2. The photodynamic activity of the GaPcs was studied in comparison to methylene blue (MB) and a photodynamically active Zn(II)-phthalo-cyanine with the same substitution (ZnPcMe). Photodynamic treatment with 3.0 mM GaPc1 at mild light conditions (50 J cm-2, 60 mW cm-2) resulted in a high photoinactivation of the microorganisms in the planktonic phase nevertheless the dark toxicity of GaPc1 towards MRSA and E. faecalis. GaPcs against fungal biofilm grown on polymethylmethacrylate (PMMC) resin showed a complete inactivation at a higher concentration of GaPc2 (6.0 mM) and of the referent sensitizer ZnPcMe. However, the bacterial biofilms were not susceptible to treatment of GaPcs with only 1–2 log reduction of the biofilm. The bacterial biofilm E. faecalis was effectively inactivated only with MB. The water-soluble octa-methylpyridyloxy substituted GaPc2 has a potential value for photodynamic treatment of C. albicans biofilms formed on denture acrylic resin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Dai, Y.-Y. Huang and M. R. Hamblin, Photodynamic therapy for localized infections–State of the art, Photodiagn. Photodyn. Ther., 2009, 6(3–4), 170–188.

    Article  CAS  Google Scholar 

  2. R. Bonnett, in Chemical aspects in Photodynamic therapy (Advanced chemistry texts), ed. D. Phillips, P. O’Brien and S. Roberts, CRC Press, London 1st edn, 2000, vol. 1, ch. 1, pp. 1–13.

    Google Scholar 

  3. G. Jori, C. Fabris, M. Soncin, S. Ferro, O. Coppellotti, D. Dei, L. Fantetti, G. Chiti and G. Roncucci, Photodynamic therapy in the treatment of microbial infections: Basic principles and perspective applications, Lasers Surg. Med., 2006, 38, 468–481.

    Article  Google Scholar 

  4. M. R. Hamblin and T. Hasan, Photodynamic therapy: a new antimicrobial approach to infection diseasě, Photochem. Photobiol. Sci., 2004, 3(5), 436–450.

    Article  CAS  Google Scholar 

  5. P. Meisel and T. Kocher, Photodynamic therapy for periodontal diseases: state of the art, J. Photochem. Photobiol., B, 2005, 79(2), 159–170.

    Article  CAS  Google Scholar 

  6. W. Spiller, H. Kliesch, D. Wöhrle, S. Hackbarth and B. Roeder, Singlet oxygen quantum yield of different photosensitizers in polar solvents and micellar solutions, J. Porphyrins Phthalocyanines, 1998, 2, 145–158.

    Article  CAS  Google Scholar 

  7. L. B. Josefsen and R. W. Boyle, Photodynamic therapy of the development of metal-based photosensitizers, Met.-Based Drugs, 2008, 2008, 276109.

    Article  Google Scholar 

  8. S. Moeno and T. Nyokong, Solvent and central metal effects on the photophysical and photochemical properties of peripherally tetra mercaptopyridine substituted metallophthalocyanines, J. Photochem. Photobiol., A, 2009, 203, 204–210.

    Article  CAS  Google Scholar 

  9. M. Durmus and T. Nyokong, The synthesis, fluorescence behaviour and singlet oxygen studies of new water-soluble cationic gallium(III) phthalocyanine, Inorg. Chem. Commun., 2007, 10, 332–338.

    Article  CAS  Google Scholar 

  10. M. Durmus and T. Nyokong, Synthesis, photophysical and photochemical properties of tetra- and octa-substituted gallium and indium phthalocyanines, Polyhedron, 2007, 26, 3323–3335.

    Article  CAS  Google Scholar 

  11. V. Chauke, A. Ogunsipe, M. Durmus and T. Nyokong, Novel gallium(III) phthalocyanine derivatives -Synthesis, photophysics and photochemistry, Polyhedron, 2007, 26, 2663–2671.

    Article  CAS  Google Scholar 

  12. C. M. Cassidy, M. M. Tunney, P. A. McCarron and R. F. Donnelly, Drug delivery strategies for photodynamic antimicrobial chemotherapy, J. Photochem. Photobiol., B, 2009, 95, 71–80.

    Article  CAS  Google Scholar 

  13. A. Minnock, D. I. Vernon, J. Schofield, J. Griffits, J. H. Parish and T. S. Brown, Photoinactivation of bacteria. Use of cationic water-soluble zinc-phthalocyanine to inactivate both Gram-negative and Grampositive bacteria, J. Photochem. Photobiol., B, 1996, 32, 159–164.

    Article  CAS  Google Scholar 

  14. G. Bertoloni, F. Rossi, G. Valduga, G. Jori and J. E. Van Lier, Photosensitizing activity of water- and lipid-soluble phthalocyanines on Escherichia coli, FEMS Microbiol. Lett., 1990, 71, 149–156.

    CAS  Google Scholar 

  15. I. Scalise and E. N. Durantini, Synthesis, properties and photodynamic inactivation of Escherichia coli using cationic and a noncharged Zn(II) pyridyloxyphthalocyanine derivatives, Bioorg. Med. Chem., 2005, 13, 3037–3045.

    Article  CAS  Google Scholar 

  16. E. Reddi, M. Ceccon, G. Valduga, G. Jori, J. C. Bommer, F. Elisei, L. Latterini and U. Mazzucato, Photophysical properties and antibacterial activity of meso-substituted cationic porphyrins, Photochem. Photo-biol., 2002, 75, 462–470.

    Article  CAS  Google Scholar 

  17. A. Minnock, D. I. Vernon, J. Schofield, J. Griffiths, J. H. Parish and S. B. Brown, Mechanism of uptake of a cationic water-soluble pyridinium zinc phthalocyanine across the outer membrane of Escherichia coli, Antimicrob. Agents Chemother., 2000, 44, 522–527.

    Article  CAS  Google Scholar 

  18. V. Kussovski, V. Mantareva, I. Angelov, P. Orozova, D. Wöhrle, G. Schnurpfeil, E. Borisova and L. Avramov, Photodynamic inactivation of Aeromonas hydrophila by cationic phthalocyanines with different hydrophobicity, FEMS Microbiol. Lett., 2009, 294, 133–140.

    Article  CAS  Google Scholar 

  19. V. Mantareva, V. Kussovski, I. Angelov, E. Borisova, L. Avramov, G. Schnurpfeil and D. Wöhrle, Photodynamic activity of water-soluble phthalocyanine zinc(II) complexes against pathogenic microorganisms, Bioorg. Med. Chem., 2007, 15, 4829–4835.

    Article  CAS  Google Scholar 

  20. I. Angelov, V. Mantareva, V. Kussovski, D. Wöhrle, E. Borisova and L. Avramov, Improved antimicrobial therapy with cationic tetra- and octa-substituted phthalocyanines, Proceedings of SPIE, Lasers Biol. Med., 2008, 7027, 702–717.

    Google Scholar 

  21. L. Costa, E. Alves, C. M. B. Carvalho, J. P. C. Tome, M. A. F. Faustino, M. G. P. M. S. Neves, A. C. Tome, J. A. S. Cavaleiro, A. Cunha and A. Almeida, Sewage bacteriophage photoinactivation by cationic porphyrins: a study of charge effect, Photochem. Photobiol. Sci., 2008, 7, 415–422.

    Article  CAS  Google Scholar 

  22. M. E. Davey and G. A. O’Toole, Microbial biofilms: from ecology to molecular genetics, Microbiol. Mol. Biol. Rev., 2000, 64, 847–867.

    Article  CAS  Google Scholar 

  23. H. Anwar, M. K. Dasgupta and J. W. Costerton, Testing the susceptibility of bacteria in biofilms to antibacterial agents, Antimicrob. Agents Chemother., 1990, 34, 2043–2046.

    Article  CAS  Google Scholar 

  24. J. Dobson and M. Wilson, Sensitization of oral bacteria in biofilms to killing by light from a low-power laser, Arch. Oral Biol., 1992, 37, 883–887.

    Article  CAS  Google Scholar 

  25. G. O’Tool, H. B. Caplan and R. Kolter, Biofilm formation as microbial development, Annu. Rev. Microbiol., 2000, 54, 49–79.

    Article  Google Scholar 

  26. J. Chandra, D. M. Kuhn, P. K. Mukherjee, L. L. Hoyer, T. McCormick and M. A. Ghannoum, Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance, J. Bacteriol., 2001, 183, 5385–5394.

    Article  CAS  Google Scholar 

  27. C. F. Lee, C. J. Lee, C. T. Chen and C. T. Huang, delta-Aminolaevulinic acid mediated photodynamic antimicrobial therapy on Pseudomonas aeruginosa planktonic and biofilm cultures, J. Photochem. Photobiol., B, 2004, 75, 21–25.

    Article  CAS  Google Scholar 

  28. K. Konopka and T. Goslinski, Photodynamic therapy in dentistry, J. Dent. Res., 2007, 86(8), 694–707.

    Article  CAS  Google Scholar 

  29. V. Mantareva, I. Angelov, V. Kussovski, D. Wöhrle and S. Dimitrov, Metallophthalocyanines as photodynamic sensitizers for treatment of pathogenic bacteria. Synthesis and singlet oxygen formation, C. R. Acad. Bulg. Sci., 2009, 62(12), 1521–1526.

    CAS  Google Scholar 

  30. V. Mantareva, I. Angelov, V. Kussovski, D. Wöhrle and S. Dimitrov, Metallophthalocyanines as photodynamic sensitizers for treatment of pathogenic bacteria. Uptake and photoinactivation properties, C. R. Acad. Bulg. Sci., 2010, 63(1), 77–84.

    CAS  Google Scholar 

  31. D. Wöhrle, N. Iskander, G. Graschew, H. Sinn, E. A. Friedrich, W. Maier-Borst, J. Stern and P. Schlag, Synthesis of positively charged phthalocyanines and their activity in the photodynamic therapy of cancer cells, Photochem. Photobiol., 1990, 51, 351–356.

    Article  Google Scholar 

  32. A. Ogunsipe, D. Maree and T. Nyokong, Solvent effects on the photochemical and fluorescence properties of zinc phthalocyanine derivatives, J. Mol. Struct., 2003, 650, 131–140.

    Article  CAS  Google Scholar 

  33. V. Mantareva, D. Petrova, L. Avramov, I. Angelov, E. Borisova, M. Peeva and D. Wöhrle, Long wavelength absorbing cationic Zn(II)-phthalocyanines as fluorescent contrast agents for B16 pigmented melanoma, J. Porphyrins Phthalocyanines, 2005, 9(1), 47–53.

    Article  CAS  Google Scholar 

  34. Zh. Xu, G. Bai and Ch. Dong, Spectral and photophysical properties of intramolecular charge transfer fluorescence probe: 4-Dimethylamino-2,5-dihydroxychalcone, Spectrochim. Acta, Part A, 2005, 62, 987–990.

    Article  Google Scholar 

  35. T. N. Demidova and M. R. Hamblin, Effect of cell-photosensitizer binding and cell-density on microbial photoinactivation, Antimicrob. Agents Chemother., 2005, 49, 2329–2335.

    Article  CAS  Google Scholar 

  36. M. Wainwright and K. B. Crossley, Photosensitising agents–circumventing resistance and breaking down biofilms: a review, Int. Biodeterior. Biodegrad., 2004, 53, 119–126.

    Article  CAS  Google Scholar 

  37. T. Maisch, J. Baier, B. Franz, M. Maier, M. Landthaler, R.-M. Szeimies and W. Baumler, The role of singlet oxygen inactivation of bacteria, Proc. Natl. Acad. Sci. U. S. A., 2007, 104(17), 7223–7228.

    Article  CAS  Google Scholar 

  38. A. Di Poto, M. S. Sbarra, G. Provenza, L. Visai and P. Speziale, The effect of photodynamic treatment combined with antibiotic action or host defence mechanisms on Staphylococcus aureus biofilms, Biomaterials, 2009, 30, 3158–3166.

    Article  Google Scholar 

  39. M. S. Sbarra, C. R. Arciola, A. Di Poto, E. Saino, H. Rohde, P. Speziale and L. Visai, The photodynamic effect of tetra-substituted N-methyl-pyridyl-porphine combined with the action of vancomycin or host defense mechanisms disrupts Staphylococcus epidermidis biofilms, Int. J. Artif. Organs, 2009, 32(9), 574–583.

    Article  CAS  Google Scholar 

  40. T. C. Pagonic, J. Chen, C. R. Fontana, H. Devalapally, K. Ruggiero, X. Song, F. Foschi, J. Dunham, Z. Skobe, H. Yamazaki, R. Kent, A. C. Tanner, M. M. Amiji and N. S. Soukos, Nanoparticles-based Endodontic Antimicrobial Photodynamic therapy, J. Endod., 2010, 36(2), 322–328.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanya Mantareva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mantareva, V., Kussovski, V., Angelov, I. et al. Non-aggregated Ga(III)-phthalocyanines in the photodynamic inactivatio planktonic and biofilm cultures of pathogenic microorganisms. Photochem Photobiol Sci 10, 91–102 (2011). https://doi.org/10.1039/b9pp00154a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b9pp00154a

Navigation