Issue 10, 2011

Porous LiMn2O4 as cathode material with high power and excellent cycling for aqueous rechargeable lithium batteries

Abstract

A porous LiMn2O4 consisting of nano grains was prepared by using polystyrene as template. It was studied as a cathode material for aqueous rechargeable lithium batteries (ARLBs) using 0.5 mol l−1Li2SO4 aqueous solution as the electrolyte. Charge and discharge capacities at a current density of 10 A g−1 (about 90C) were 76% and 95% of the total capacity (118 mAh g−1), respectively. The power density can be up to 10000 W kg−1 and the cycling behavior is excellent. After 10000 cycles at 9C with 100% DOD (depth of discharge), the capacity retention of porous LiMn2O4 is 93%, which indicates that it can be used for a lifetime without maintenance. The main reasons for its excellent electrochemical performance are due to the nano grains, porous morphology and high crystalline structure. In addition, the acid-free aqueous electrolyte prevents Mn2+ from dissolution. These excellent results suggest a great promise for the development of aqueous rechargeable lithium batteries (ARLBs) in practical application.

Graphical abstract: Porous LiMn2O4 as cathode material with high power and excellent cycling for aqueous rechargeable lithium batteries

Supplementary files

Article information

Article type
Paper
Submitted
16 Nov 2010
Accepted
11 Mar 2011
First published
14 Apr 2011

Energy Environ. Sci., 2011,4, 3985-3990

Porous LiMn2O4 as cathode material with high power and excellent cycling for aqueous rechargeable lithium batteries

Q. Qu, L. Fu, X. Zhan, D. Samuelis, J. Maier, L. Li, S. Tian, Z. Li and Y. Wu, Energy Environ. Sci., 2011, 4, 3985 DOI: 10.1039/C0EE00673D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements