Skip to main content

Advertisement

Log in

Nanoparticles: their potential use in antibacterial photodynamic therapy

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) has been proposed as a new technique to inactivate microorganisms as it does not lead to the selection of mutant resistant strains; a clear benefit compared to antibiotic treatment. PDT has also attracted the interest of nanotechnology as the effectiveness of the treatment can be greatly enhanced by the use of nanoparticles. In the last decade, different approaches to the combination of nanoparticles and PDT have been investigated in relation to the antimicrobial applications of the technique. One use of the nanoparticles is to improve the delivery of photosensitiser to the bacteria; others use the nanoparticles to improve the inactivation kinetics. A different approach utilises nanoparticles as a photosensitiser. In this review these diverse types of interactions will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Valeur, Molecular Fluorescence: Principles and Applications, Wiley-VCH, 2001.

    Book  Google Scholar 

  2. T. Maisch, R. M. Szeimies, G. Jori and C. Abels, Antibacterial Photodynamic Therapy in Dermatology, Photochem. Photobiol. Sci., 2004, 3(10), 907–917.

    Article  CAS  PubMed  Google Scholar 

  3. M. R. Hamblin and T. Hasan, Photodynamic Therapy: a New Antimicrobial Approach to Infectious Disease, Photochem. Photobiol. Sci., 2004, 3(5), 436–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. D. E. J. G. J. Dolmans, D. Fukumura and R. K. Jain, Photodynamic Therapy for Cancer, Nat. Rev. Cancer, 2003, 3, 380–387.

    Article  CAS  PubMed  Google Scholar 

  5. M. C. DeRosa and R. J. Crutchley, Photosensitized singlet oxygen and its applications, Coord. Chem. Rev., 2002, 233–234, 351–371.

    Article  Google Scholar 

  6. B. B. Fuchs, G. P. Tegos, M. R. Hamblinand and E. Mylonakis, Susceptibility of Cryptococcus neoformans to Photodynamic Inactivation is Associated with Cell Wall Integrity, Antimicrob. Agents Chemother., 2007, 51(8), 2929–2936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. M. Schäfer, C. Schmitz, R. Facius, G. Horneck, B. Milow, K. H. Funken and J. Ortner, Systematic Study of Parameters Influencing the Action of Rose Bengal with VisibleLight on Bacterial Cells:Comparison Between the Biological Effect and Singlet-Oxygen Production, Photochem. Photobiol., 2000, 71(5), 514–523.

    Article  PubMed  Google Scholar 

  8. M. Schäfer, C. Schmitzand and G. Horneck, High Sensitivity of Deinococcus radiodurans to Photodynamically Produced Singlet Oxygen, Int. J. Radiat. Biol., 1998, 74(2), 249–253.

    Article  PubMed  Google Scholar 

  9. S. Ferro, L. Guidolin, G. Tognon, G. Joriand and O. Cappellotti, Mechanisms involved in the photosensitized inactivation of Acanthamoeba palestinensis trophozoites, J. Appl. Microbiol., 2009, 107, 1615–1623.

    Article  CAS  PubMed  Google Scholar 

  10. N. A. Romanova, L. Y. Brovko, L. Moore, E. Pometun, A. P. Savatsky, N. N. Ugarova and M. W. Griffith, Assessment of Photodynamic Destruction of Escherichia coli O157:H7 and Listeria monocytogenes by Using ATP Bioluminescence, Appl. Environ. Microbiol., 2003, 69(11), 6393–6398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Z. Malik, T. Babushkin, S. Sher, J. Hanania, H. Ladan, Y. Nitzanand and S. Salzberg, Collapse of K + and Ionic Balance During Photodynamic Inactivation of Leukemic-cells, Erythrocytes and Staphylococcus aureus, Int. J. Biochem., 1993, 25(10), 1399–1406.

    Article  CAS  PubMed  Google Scholar 

  12. S. Menezes, M. A. M. Capellaand and L. R. Caldas, Photodynamic Action of Methylene blue: Repair and Mutation in Escherichia coli, J. Photochem. Photobiol., B, 1990, 5, 505–517.

    Article  CAS  Google Scholar 

  13. M. Wilson, Lethal Photosensitisation of Oral Bacteria and its Potential Application in the Photodynamic Therapy of Oral Infections, Photochem. Photobiol. Sci., 2004, 3, 412–418.

    Article  CAS  PubMed  Google Scholar 

  14. F. Giuliani, A. C. Martinelli, D. Arbia, L. Fantettiand and G. Roncucci, In Vitro Resistance Selection Studies of RLP068/Cl, a New Zn(II) Phthalocyanine Suitable for Antimicrobial Photodynamic Therapy, Antimicrob. Agents Chemother., 2009, 54(2), 637–642.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. A. Tavares, C. M. B. Carvalho, M. A. Faustino, G. P. M. S. Neves, J. P. C. Tomé, A. C. Tomé, J. A. S. Cavaleiro, A. Cunha, N. C. M. Gomes, E. Alves and Almeida, Antimicrobial Photodynamic Therapy: Study of Bacterial Recovery Viability and Potential Development of Resistance after Treatment, Mar. Drugs, 2010, 8, 91–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. E. G. D. Mima, A. C. Pavarina, L. N. Dovigo, C. E. Vergani, C. A. D. Costa, C. Kurachi and V. S. Bagnato, Susceptibility of Candida albicans to Photodynamic Therapy in a Murine Model of Oral Candidosis, Oral Surg., Oral Med., Oral Pathol., Oral Radiol. Endodontol., 2010, 109(3), 392–401.

    Article  Google Scholar 

  17. F. P. Gonzales, S. H. da Silva, D. W. Roberts and G. U. L. Braga, Photodynamic Inactivation of Conidia of the Fungi Metarhizium anisopliae and Aspergillus nidulans with Methylene Blue and Toluidine Blue, Photochem. Photobiol., 2010, 86(3), 653–661.

    Article  CAS  PubMed  Google Scholar 

  18. R. C. Souza, J. C. Junqueira, R. D. Rossoni, C. A. Pereira, E. J. Munin and O. C. Antonio, Comparison of the Photodynamic Fungicidal Efficacy of Methylene Blue, Toluidine Blue, Malachite Green and Lowpower Laser Irradiation Alone Against Candida albicans, Lasers Med. Sci., 2009, 25(3), 385–389.

    Article  PubMed  Google Scholar 

  19. T. W. Wong, H. J. Huang, Y. F. Wang, Y. P. Lee, C. C. Huang and C. K. Yu, Methylene Blue Mediated Photodynamic Inactivation as a Novel Disinfectant of Enterovirus 71, J. Antimicrob. Chemother., 2010, 65(10), 2176–2182.

    Article  CAS  PubMed  Google Scholar 

  20. R. Andersen, N. Loebel, D. Hammond and M. Wilson, Treatment of periodontal disease by photodisinfection compared to scaling and root planning, J. Clin. Dent., 2007, 18, 34–38.

    PubMed  Google Scholar 

  21. A. S. Garcez, M. S. Ribeiro, G. P. Tegos, S. C. Nunez, A. O. C. Jorge and M. R. Hamblin, Antimicrobial Photodynamic Therapy Combined with Conventional Endodontic Treatment to Eliminate Root Canal Biofilm Infection, Lasers Surg. Med., 2007, 39(1), 59–66.

    Article  PubMed  PubMed Central  Google Scholar 

  22. M. Raghavendra, A. Koregol and S. Bhola, Photodynamic Therapy: a Targeted Therapy in Periodontics, Aust. Dent. J., 2009, 54, S102–S109.

    Article  PubMed  Google Scholar 

  23. T. H. Dai, G. P. Tegos, Z. S. Lu, L. Y. Huang, T. Zhiyentayev, M. J. Franklin, D. G. Baer and M. R. Hamblin, Photodynamic Therapy for Acinetobacter baumannii Burn Infections in Mice, Antimicrob. Agents Chemother., 2009, 53(9), 3929–3934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. T. Dai, Y. Y. Huang, S. K. Sharma, J. T. Hashmi, D. B. Kurup and M. R. Hamblin, Topical Antimicrobials for Burn Wound Infections, Recent Pat. Anti-Infect. Drug Discovery, 2010, 5(2), 124–151.

    Article  CAS  Google Scholar 

  25. K. Degitz, G. Plewig and H. Gollnick, Adjunctive Acne Therapies, J. Dtsch. Dermatol. Ges., 2010, 8, S75–S80.

  26. M. Soncin, C. Fabris, A. Busetti, D. Dei, D. Nistri, G. Roncucci and G. Jori, Approaches to Selectivity in the Zn(II)-Phthalocyanine Photosensitized Inactivation of Wild Type and Antibiotic Resistant Staphylococcus aureus, Photochem. Photobiol. Sci., 2002, 1, 815–819.

    Article  CAS  PubMed  Google Scholar 

  27. B. Zeina, J. Greenman, D. Corry and W. M. Purcell, Cytotoxic Effects of Antimicrobial Photodynamic Therapy on Keratinocytes in Vitro, Br. J. Dermatol., 2002, 146, 568–573.

    Article  CAS  PubMed  Google Scholar 

  28. B. Zeina, J. Greenman, D. Corry and W. M. Purcell, Antimicrobial PhotodynamicTherapy: Assessment of Genotoxic Effects onKeratinocytes in Vitro, Br. J. Dermatol., 2003, 148, 229–232.

    Article  CAS  PubMed  Google Scholar 

  29. T. Maisch, C. Bosl, R. M. Szeimies, N. Lehn and C. Abels, Photodynamic Effects of Novel XF Porphyrin Derivatives on Prokaryotic and Eukaryotic Cells, Antimicrob. Agents Chemother., 2005, 49(4), 1542–1552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. S. Perni, P. Prokopovich, I. P. Parkin, M. Wilson and J. Pratten, Prevention of Biofilm Accumulation on a Light-activated Antimicrobial Catheter Material, J. Mater. Chem., 2010, 20(39), 8668–8673.

    Article  CAS  Google Scholar 

  31. Y. Cheng, A. C. Samia, J. D. Meyers, I. Panagopoulos, B. Fei and C. Burda, Highly Efficient Drug Delivery with GoldNanoparticle Vectors for in Vivo Photodynamic Therapy of Cancer, J. Am. Chem. Soc., 2008, 130, 10643–10647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. P. K. Jain, X. Huang, I. H. El-Sayed and M. A. El-Sayed, Review of Some Interesting Surface Plasmon Resonance Enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosystems, Plasmonics, 2007, 2, 107–118.

    Article  CAS  Google Scholar 

  33. D. K. Chatterjee, L. S. Fong and Y. Zhang, Nanoparticles in Photodynamic Therapy: An Emerging Paradigm, Adv. Drug Delivery Rev., 2008, 60, 1627–1637.

    Article  CAS  Google Scholar 

  34. M. Merchant, J. D. Spikes, G. Bertoloni and G. Jori, Studies on the Mechanism of Bacteria Photosensitisation by Meso-substituted Cationic Porphyrins, J. Photochem. Photobiol., B, 1996, 35, 149–157.

    Article  Google Scholar 

  35. G. Bertoloni, F. Rossi, G. Valduga, G. Jori and J. van Lier, Photosensitizing Activity of Water- and Lipid- Soluble Phthalocyanines on Escherichia coli, FEMS Microbiol. Lett., 1990, 71(1–2), 149–156.

    Article  CAS  Google Scholar 

  36. S. Ferro, F. Ricchelli, G. Mancini, G. Tognon and G. Jori, Inactivation of Methicillin-Resistant Staphylococcus aureus (MRSA) by Liposome Delivered Photosensitising Agents, J. Photochem. Photobiol., B, 2006, 83, 98–104.

    Article  CAS  Google Scholar 

  37. S. Ferro, F. Ricchelli, D. Monti, G. Mancini and G. Jori, Efficient Photoinactivation of Methicillin-Resistant Staphylococcus aureus by a Novel Porphyrin Incorporated into a Poly-cationic Liposome, Int. J. Biochem. Cell Biol., 2007, 39, 1026–1034.

    Article  CAS  PubMed  Google Scholar 

  38. C. Bombelli, F. Bordi, S. Ferro, L. Giansanti, G. Jori, G. Mancini, C. Mazzuca, D. Monti, F. Ricchelli, S. Sennato and M. Venanzi, New Cationic Liposomes as Vehicles of m-Tetrahydroxyphenylchlorin in Photodynamic Therapy of Infectious Diseases, Mol. Pharmaceutics, 2008, 5(4), 672–679.

    Article  CAS  Google Scholar 

  39. T. C. Pagonis, J. Chen, C. R. Fontana, H. Devalapally, K. Ruggiero, X. Song, F. Foschi, J. Dunham, Z. Skobe, H. Yamazaki, R. Kent, A. C. R. Tanner, M. M. Amiji and N. S. Soukos, Nanoparticle Based Endodontic Antimicrobial Photodynamic Therapy, J. Endod., 2010, 36(2), 322–328.

    Article  PubMed  Google Scholar 

  40. S. Ferro, G. Jori, S. Sortino, R. Stancanelli, P. Nikolov, G. Tognon, F. Ricchelli and A. Mazzaglia, Inclusion of 5-[4-(1- Dodecanoylpyridinium)]-10, 15, 20-triphenylporphine in Supramolecular Aggregates of Cationic Amphiphilic Cyclodextrins: Physicochemical Characterization of the Complexes and Strengthening of the Antimicrobial Photosensitizing Activity, Biomacromolecules, 2009, 10, 2592–2600.

    Article  CAS  PubMed  Google Scholar 

  41. Y. E. L. Koo, W. Fan, H. Hah, H. Xu, D. Orringer, B. Ross, A. Rehemtulla, M. A. Philbert and R. Kopelman, Photonic explorers based on multifunctional nanoplatforms for biosensing and photodynamic therapy, Appl. Opt., 2007, 46, 1924–1930.

    Article  CAS  PubMed  Google Scholar 

  42. M. N. Usacheva, M. C. Teichert and M. A. Biel, The Role of the Methylene Blue and Toluidine Blue Monomers and Dimers in the Photoinactivation of Bacteria, J. Photochem. Photobiol., B, 2003, 71, 87–98.

    Article  CAS  Google Scholar 

  43. J. Schwiertz, A. Wiehe, S. Gräfe, B. Gitter and M. Epple, Calcium Phosphate Nanoparticles as Efficient Carriers for Photodynamic Therapy AgainstCells and Bacteria, Biomaterials, 2009, 30, 3324–3331.

    Article  CAS  PubMed  Google Scholar 

  44. S. Banfi, E. Caruso, L. Buccafurni, V. Battini, S. Zazzaron, P. Barbieri and V. Orlandi, Antibacterial Activity of Tetraaryl-porphyrin Photosensitizers: An in Vitro Study on Gram Negative and Gram Positive Bacteria, J. Photochem. Photobiol., B, 2006, 85, 28–38.

    Article  CAS  Google Scholar 

  45. T. Tsai, Y. T. Yang, T. H. Wang, H. F. Chien and C. T. Chen, Improved Photodynamic Inactivation of Gram-Positive BacteriaUsing Hematoporphyrin Encapsulated in Liposomes and Micelles, Lasers Surg. Med., 2009, 41(4), 316–322.

    Article  PubMed  Google Scholar 

  46. J. Wu, H. Xu, W. Tang, R. Kopelman, M. A. Philbert and C. Xi, Eradication of Bacteria in Suspension and Biofilms Using Methylene Blue-Loaded Dynamic Nanoplatforms, Antimicrob. Agents Chemother., 2009, 53(7), 3042–3048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Y. Guo, S. Rogelj and P. Zhang, Rose Bengal Decorated Silica Nanoparticles as Photosensitizers for Inactivation of Gram Positive Bacteria, Nanotechnology, 2010, 21, 065102.

  48. S. A. Bezman, P. A. Burtis, P. J. Izod and M. A. Thayer, Photodynamic Inactivation of E. coli by Rose Bengal Immobilized on Polystyrene Beads, Photochem. Photobiol., 1978, 28, 325–329.

    Article  CAS  PubMed  Google Scholar 

  49. J. Gil-Thomas, S. Tubby, I. P. Parkin, N. Narband, L. Dekker, S. P. Nair, M. Wilson and C. Street, Lethal Photosensitisation of Staphylococcus aureus Using a Toluidine Blue O–Tiopronin–Gold Nanoparticle Conjugate, J. Mater. Chem., 2007, 17, 3739–3746.

    Article  CAS  Google Scholar 

  50. I. Banerjee, D. Mondal, J. Martin and R. S. Kane, Photoactivated Antimicrobial Activity of Carbon Nanotube-Porphyrin Conjugates, Langmuir, 2010, 26, 17369–17374.

    Article  CAS  PubMed  Google Scholar 

  51. C. Piccirillo, S. Perni, J. Gil-Tomas, P. Prokopovich, M. Wilson, J. Pratten and I. P. Parkin, Antibacterial Activity of Methylene Blue and Toluidine Blue O Covalently Bounded to Modified Silicone Polymer Surface, J. Mater. Chem., 2009, 19(34), 6167–6171.

    Article  CAS  Google Scholar 

  52. J. Bozja, J. Sherrill, S. Michielsen and I. Stojiljkovic, Porphyrin Based, Light-Activated Antimicrobial Materials, J. Polym. Sci., Part A: Polym. Chem., 2003, 41, 2297–2303.

    Article  CAS  Google Scholar 

  53. P. A. Suci, Z. Varpness, E. Gillitzer, T. Douglas and M. Young, Targeting and Photodynamic Killing of a Microbial Pathogen Using Protein Cage Architectures Functionalized with a Photosensitizer, Langmuir, 2007, 23, 12280–12286.

    Article  CAS  PubMed  Google Scholar 

  54. V. Decraene, A. Rampaul, I. P. Parkin, A. Petrie and M. Wilson, Enhancement by Nanogold of the Efficacy of a Light-Activated Antimicrobial Coating, Curr. Nanosci., 2009, 5(3), 257–261.

    Article  CAS  Google Scholar 

  55. P. Prokopovich, S. Perni, C. Piccirillo, J. Pratten, I. P. Parkin and M. Wilson, Frictional Properties of Light-Activated Silicone and Polyurethane Against Blood Vessels, J. Mater. Sci.: Mater. Med., 2009, 21(2), 815–821.

    Google Scholar 

  56. S. Perni, C. Piccirillo, J. R. Pratten, P. Prokopovich, W. Chrzanowski, I. P. Parkin and M. Wilson, The Antimicrobial Properties of Lightactivated Polymers Containing Methylene Blue and Gold Nanoparticles, Biomaterials, 2009, 30(1), 89–93.

    Article  CAS  PubMed  Google Scholar 

  57. S. Perni, P. Prokopovich, C. Piccirillo, J. R. Pratten, I. P. Parkin and M. Wilson, Toluidine Blue-Containing Polymers Exhibit Bactericidal Activity When IrradiatedwithRed Light, J. Mater. Chem., 2009, 19(18), 2715–2723.

    Article  CAS  Google Scholar 

  58. N. Narband, S. Tubby, I. P. Parkin, J. Gil-Tomás, D. Ready, S. P. Nair and M. Wilson, Gold Nanoparticles Enhance the Toluidine Blue-Induced Lethal Photosensitisation of Staphylococcus aureus, Curr. Nanosci., 2008, 4, 409–414.

    Article  CAS  Google Scholar 

  59. N. Narband, M. Uppal, C. W. Dunnill, G. Hyett, M. Wilson and I. P. Parkin, The Interaction Between Gold Nanoparticles and Cationic and Anionic Dyes: Enhanced UV-Visible Absorption, Phys. Chem. Chem. Phys., 2009, 11, 10513–10518.

    Article  CAS  PubMed  Google Scholar 

  60. S. Perni, C. Piccirillo, A. Kafizas, M. Uppal, J. Pratten, M. Wilson and I. P. Parkin, Antibacterial Activity of Silicone Containing Methylene Blue and Gold Nanoparticles of Various Sizes Under Laser Light Irradiation, J. Cluster Sci., 2010, 21(3), 427–438.

    Article  CAS  Google Scholar 

  61. C. Xing, Q. Xu, H. Tang, L. Liu and S. Wang, Conjugated Polymer/Porphyrin Complexes for Efficient Energy Transfer and Improving Light-Activated Antibacterial Activity, J. Am. Chem. Soc., 2009, 131, 13117–13124.

    Article  CAS  PubMed  Google Scholar 

  62. N. Narband, M. Mubarak, D. Ready, I. P. Parkin, S. P. Nair, M. A. Green, A. Beeby and M. Wilson, Quantum Dots as Enhancers of the Efficacy of Bacterial Lethal Photosensitization, Nanotechnology, 2008, 19(44), 445102.

    Article  CAS  PubMed  Google Scholar 

  63. J. Sanabria, F. Machuca and C. F. Dierolf, A Comparison of Solar Photocatalytic Inactivation of Waterborne E. coli Using tris (2, 2′ bipyridineftuthenium(II), Rose Bengal and TiO2, J. Sol. Energy Eng., 2007, 129, 135–140.

    Article  CAS  Google Scholar 

  64. W. Wang, Q. Shang, W. Zheng, H. Yu, X. Feng, Z. Wang, Y. Zhang and G. Li, A Novel Near-Infrared Antibacterial Material Depending on the Upconverting Property of Er3 + -Yb3 + -Fe3 + Tridoped TiO2 Nanopowder, J. Phys. Chem. C, 2010, 114, 13663–13669.

    Article  CAS  Google Scholar 

  65. T. S. Wu, K. X. Wang, G. D. Li, S. Y. Sun, J. Sun and J. S. Chen, Montmorillonite-Supported Ag/TiO2 Nanoparticles: An Efficient Visible-Light Bacteria Photodegradation Material, ACS Appl. Mater. Interfaces, 2010, 2, 544–550.

    Article  CAS  PubMed  Google Scholar 

  66. Y. Yamakoshi, N. Umezawa, A. Ryu, K. Arakane, N. Miyata, Y. Goda, T. Masumizu and T. Nagano, Active Oxygen Species Generated from Photoexcited fullerene (C-60) as PotentialMedicines: O-2(-Center dot) Versus O-1(2), J. Am. Chem. Soc., 2003, 125, 12803–12809.

    Article  CAS  PubMed  Google Scholar 

  67. E. Nakamura and H. Isobe, Functionalized Fullerenes in Water. The first 10 Years of their Chemistry, Biology, and Nanoscience, Acc. Chem. Res., 2003, 36, 807–815.

    Article  CAS  PubMed  Google Scholar 

  68. G. P. Tegos, T. N. Demidova, D. Arcila-Lopez, H. Lee, T. Wharton, H. Gali and M. R. Hamblin, Cationic Fullerenes Are Effective and Selective Antimicrobial Photosensitizers, Chem. Biol., 2005, 12, 1127–1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. M. B. Spesia, M. E. Milanesio and E. N. Durantini, Synthesis, Properties and Photodynamic Inactivation of Escherichia coli by Novel Cationic Fullerene C60 Derivatives, Eur. J. Med. Chem., 2008, 43, 853–861.

    Article  CAS  PubMed  Google Scholar 

  70. L. Huang, M. Terakawa, T. Zhiyentayev, Y. Y. Huang, Y. Sawayama, A. Jahnke, G. P. Tegos, T. Wharton and M. R. Hamblin, Innovative Cationic Fullerenes as Broad-Spectrum Light-Activated Antimicrobials, Nanomed.: Nanotechnol., Biol. Med., 2010, 6, 442–452.

    Article  CAS  Google Scholar 

  71. E. M. Hotze, A. R. Badireddy, S. Chellam and M. R. Wiesner, Mechanisms of Bacteriophage Inactivation via Singlet Oxygen Generation in UV Illuminated Fullerol Suspensions, Environ. Sci. Technol., 2009, 43, 6639–6645.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Perni.

Additional information

This article is published as part of a themed issue on immunological aspects and drug delivery technologies in PDT.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perni, S., Prokopovich, P., Pratten, J. et al. Nanoparticles: their potential use in antibacterial photodynamic therapy. Photochem Photobiol Sci 10, 712–720 (2011). https://doi.org/10.1039/c0pp00360c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00360c

Navigation