Skip to main content
Log in

Quantum dot-folic acid conjugates as potential photosensitizers in photodynamic therapy of cancer

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

This study examined the in vitro potential of bioconjugated quantum dots (QDs) as photosensitizers for photodynamic therapy (PDT). According to our previous approaches using photosensitizers, folic acid appears to be an optimal targeting ligand for selective delivery of attached therapeutic agents to cancer tissues. We synthesized hydrophilic near infrared emitting CdTe(S)-type QDs conjugated with folic acid using different spacers. Photodynamic efficiency of QDs conjugated or not with folic acid was evaluated on KB cells, acting as a positive control due to their overexpression of FR-α, and HT-29 cells lacking FR-α, as negative control. A design of experiments was suggested as a rational solution to evaluate the impacts of each experimental factor (QD type and concentration, light fluence and excitation wavelength, time of contact before irradiation and cell phenotype). We demonstrated that, for concentrations lower than 10 nM, QDs displayed practically no cytotoxic effect without light exposure for both cell lines. Whereas QDs at 2.1 nM displayed a weak photodynamic activity, a concentration of 8 nM significantly enhanced the photodynamic efficiency characterized by a light dose-dependent response. A statistically significant difference in photodynamic efficiency between KB and HT-29 cells was evidenced in the case of folic acid-conjugated QDs. Optimal conditions led to an enhanced photocytotoxicity response, allowing us to validate the ability of QDs to generate a photodynamic effect and of folic acid-conjugated QDs for targeted PDT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. M. Sharman, C. M. Allen and J. E. Van Lier, Photodynamic therapeutics: Basic principles and clinical applications, Drug Discovery Today, 1999, 4, 507–517.

    Article  CAS  PubMed  Google Scholar 

  2. R. K. Pandey and G. Zhang, Porphyrin Handbook, Academic Press, San Diego, CA, ed. K. M. Kadish, K.M. Smith and R. Guilard, 2000.

  3. I. J. MacDonald and T. J. Dougherty, Basic principles of photodynamic therapy, J. Porphyrins Phthalocyanines, 2001, 5, 105–129.

    Article  CAS  Google Scholar 

  4. A. C. Kübler, Photodynamic therapy, Med. Laser Appl., 2005, 20, 37–45.

    Article  Google Scholar 

  5. I. J. Mac Donald and T. J. Dougherty, Basic Principles of Photodynamic Therapy, J. Porphyrins Phthalocyanines, 2001, 5, 6.

    Google Scholar 

  6. K. R. Weishaupt, C. J. Gomer and T. J. Dougherty, Identification of singlet oxygen as the cytotoxic agent in photo inactivation of a murine tumor, Cancer Res., 1976, 36, 2326–2329.

    CAS  PubMed  Google Scholar 

  7. J. B. Mitchell, S. McPherson and W. DeGraff, Oxygen dependence of hematoporphyrin derivative-induced photoinactivation of Chinese hamster cells, Cancer Res., 1985, 45, 2008–2011.

    CAS  PubMed  Google Scholar 

  8. A. P. Castano, Q. Liu and M. R. Hamblin, A green fluorescent proteinexpressing murine tumour but not its wild-type counterpart is cured by photodynamic therapy, Br. J. Cancer, 2006, 94, 391–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. W. M. Sharman, J. E. Van Lier and C. M. Allen, Targeted photodynamic therapy via receptor mediated delivery systems, Adv. Drug DeliveryRev., 2004, 56, 53–76.

    Article  CAS  Google Scholar 

  10. P. Garin-Chesa, I. Campbell, P. E. Saigo, J. L. Lewis Jr, L. J. Old and W. J. Rettig, Trophoblast and ovarian cancer antigen LK26: Sensitivity and specificity in immunopathology and molecular identification as a folate-binding protein, Am. J. Pathol., 1993, 142, 557–567.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Y. Lu and P. S. Low, Folate-mediated delivery of macromolecular anticancer therapeutic agents, Adv. Drug Delivery Rev., 2002, 54, 675–693.

    Article  CAS  Google Scholar 

  12. B. A. Kamen and A. Capdevila, Receptor-mediated folate accumulation is regulated by the cellular folate content, Proc. Natl. Acad. Sci. U. S. A., 1986, 83, 5983–5987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. C. P. Leamon and P. S. Low, Delivery of macromolecules into living cells: A method that exploits folate receptor endocytosis, Proc. Natl. Acad. Sci. U. S. A., 1991, 88, 5572–5576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. J. Sudimack and R. J. Lee, Targeted drug delivery via the folate receptor, Adv. Drug Delivery Rev., 2000, 41, 147–162.

    Article  CAS  Google Scholar 

  15. P. S. Low and A. C. Antony, Folate receptor-targeted drugs for cancer and inflammatory diseases, Adv. Drug Delivery Rev., 2004, 56, 1055–1058.

    Article  CAS  Google Scholar 

  16. N. Parker, M. J. Turk, E. Westrick, J. D. Lewis, P. S. Low and C. P. Leamon, Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay, Anal.Biochem., 2005, 338, 284–293.

    Article  CAS  PubMed  Google Scholar 

  17. J. J. Turek, C. P. Leamon and P. S. Low, Endocytosis of folate-protein conjugates: Ultrastructural localization in KB cells, J. Cell Sci., 1993, 106, 423–430.

    CAS  PubMed  Google Scholar 

  18. C. P. Leamon and J. A. Reddy, Folate-targeted chemotherapy, Adv. Drug Delivery Rev., 2004, 56, 1127–1141.

    Article  CAS  Google Scholar 

  19. S. Sabharanjak and S. Mayor, Folate receptor endocytosis and trafficking, Adv. Drug Delivery Rev., 2004, 56, 1099–1109.

    Article  CAS  Google Scholar 

  20. E. I. Sega and P. S. Low, Tumor detection using folate receptor-targeted imaging agents, Cancer Metastasis Rev., 2008, 27, 655–664.

    Article  CAS  PubMed  Google Scholar 

  21. A. P. Alivisatos, Perspectives on the physical chemistry of semiconductor nanocrystals, J. Phys. Chem., 1996, 100, 13226–13239.

    Article  CAS  Google Scholar 

  22. M. Bruchez Jr, M. Moronne, P. Gin, S. Weiss and A. P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels, Science, 1998, 281, 2013–2016.

    Article  CAS  PubMed  Google Scholar 

  23. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss, Quantum dots for live cells, in vivo imaging, and diagnostics, Science, 2005, 307, 538–544.

    CAS  Google Scholar 

  24. A. Sukhanova, J. Devy, L. Venteo, H. Kaplan, M. Artemyev, V. Oleinikov, D. Klinov, M. Pluot, J. H. M. Cohen and I. Nabiev, Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells, Anal. Biochem., 2004, 324, 60–67.

    Article  CAS  PubMed  Google Scholar 

  25. B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou and A. Libchaber, In vivo imaging of quantum dots encapsulated in phospholipid micelles, Science, 2002, 298, 1759–1762.

    Article  CAS  PubMed  Google Scholar 

  26. D. V. Talapin, I. Mekis, S. Götzinger, A. Kornowski, O. Benson and H. Weller, CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core-shell-shell nanocrystals, J. Phys. Chem. B, 2004, 108, 18826–18831.

    Article  CAS  Google Scholar 

  27. Y. He, L. M. Sai, H. T. Lu, M. Hu, W. Y. Lai, Q. L. Fan, L. H. Wang and W. Huang, Microwave-assisted synthesis of water-dispersed CdTe nanocrystals with high luminescent efficiency and narrow size distribution, Chem. Mater., 2007, 19, 359–365.

    Article  CAS  Google Scholar 

  28. J. Y. Chen, Y. M. Lee, D. Zhao, N. K. Mak, R. N. S. Wong, W. H. Chan and N. H. Cheung, Quantum dot-mediated photoproduction of reactive oxygen species for cancer cell annihilation, Photochem. Photobiol., 2010, 86, 431–437.

    Article  CAS  PubMed  Google Scholar 

  29. A. Rakovich, D. Savateeva, T. Rakovich, J. F. Donegan, Y. P. Rakovich, V. Kelly, V. Lesnyak and A. Eychmüller, CdTe quantum dot/dye hybrid system as photosensitizer for photodynamic therapy, Nanoscale Res. Lett., 2010, 5, 753–760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. E. Yaghini, A. M. Seifalian and A. J. MacRobert, Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy, Nanomedicine, 2009, 4, 353–363.

    Article  CAS  PubMed  Google Scholar 

  31. A. C. S. Samia, S. Dayal and C. Burda, Quantum dot-based energy transfer: Perspectives and potential for applications in photodynamic therapy, Photochem. Photobiol., 2006, 82, 617–625.

    Article  CAS  PubMed  Google Scholar 

  32. R. Bakalova, H. Ohba, Z. Zhelev, T. Nagase, R. Jose, M. Ishikawa and Y. Baba, Quantum dot anti-CD conjugates: Are they potential photosensitizers or potentiators of classical photosensitizing agents in photodynamic therapy of cancer?, Nano Lett., 2004, 4, 1567–1573.

    Article  CAS  Google Scholar 

  33. D. K. Chatterjee, L. S. Fong and Y. Zhang, Nanoparticles in photodynamic therapy: An emerging paradigm, Adv. Drug Delivery Rev., 2008, 60, 1627–1637.

    Article  CAS  Google Scholar 

  34. J. M. Hsieh, M. L. Ho, P. W. Wu, P. T. Chou, T. T. Tsai and Y. Chi, Iridium-complex modified CdSe/ZnS quantum dots; a conceptual design for bifunctionality toward imaging and photosensitization, Chem. Commun., 2006, 615–617.

    Google Scholar 

  35. P. Juzenas, W. Chen, Y. P. Sun, M. A. N. Coelho, R. Generalov, N. Generalova and I. L. Christensen, Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer, Adv. Drug Delivery Rev., 2008, 60, 1600–1614.

    Article  CAS  Google Scholar 

  36. A. C. S. Samia, X. Chen and C. Burda, Semiconductor Quantum Dots for Photodynamic Therapy, J. Am. Chem. Soc., 2003, 125, 15736–15737.

    Article  CAS  PubMed  Google Scholar 

  37. L. Shi, V. De Paoli, N. Rosenzweig and Z. Rosenzweig, Synthesis and application of quantum dots FRET-based protease sensors, J. Am. Chem. Soc., 2006, 128, 10378–10379.

    Article  CAS  PubMed  Google Scholar 

  38. A. Anas, H. Akita, H. Harashima, T. Itoh, M. Ishikawa and V. Biju, Photosensitized breakage and damage of DNA by CdSe-ZnS quantum dots, J. Phys. Chem. B, 2008, 112, 10005–10011.

    Article  CAS  PubMed  Google Scholar 

  39. S. J. Cho, D. Maysinger, M. Jain, B. Röder, S. Hackbarth and F. M. Winnik, Long-term exposure to CdTe quantum dots causes functional impairments in live cells, Langmuir, 2007, 23, 1974–1980.

    Article  CAS  PubMed  Google Scholar 

  40. J. Liang, Z. He, S. Zhang, S. Huang, X. Ai, H. Yang and H. Han, Study on DNA damage induced by CdSe quantum dots using nucleic acid molecular “light switches” as probe, Talanta, 2007, 71, 1675–1678.

    Article  CAS  PubMed  Google Scholar 

  41. P. Juzenas, R. Generalov, A. Juzeniene and J. Moan, Generation of nitrogen oxide and oxygen radicals by quantum dots, J. Biomed. Nanotechnol., 2008, 4, 450–456.

    Article  CAS  Google Scholar 

  42. R. Schneider, F. Schmitt, C. Frochot, Y. Fort, N. Lourette, F. Guillemin, J. F. Müller and M. Barberi-Heyob, Design, synthesis, and biological evaluation of folic acid targeted tetraphenylporphyrin as novel photosensitizers for selective photodynamic therapy, Bioorg. Med. Chem., 2005, 13, 2799–2808.

    Article  CAS  PubMed  Google Scholar 

  43. J. Gravier, R. Schneider, C. Frochot, T. Bastogne, F. Schmitt, J. Didelon, F. Guillemin and M. Barberi-Heyob, Improvement of metatetra( hydroxyphenyl)chlorin-like photosensitizer selectivitywith folatebased targeted delivery. Synthesis and in vivo delivery studies, J. Med. Chem., 2008, 51, 3867–3877.

    Article  CAS  PubMed  Google Scholar 

  44. L. Tirand, T. Bastogne, D. Bechet, M. Linder, N. Thomas, C. Frochot, F. Guillemin and M. Barberi-Heyob, Response Surface Methodology: An Extensive Potential to Optimize in vivo Photodynamic Therapy Conditions, Int. J. Radiat. Oncol., Biol., Phys., 2009, 75, 244–252.

    Article  Google Scholar 

  45. J. Guo, W. Yang and C. Wang, Systematic study of the photoluminescence dependence of thiol-capped CdTe nanocrystals on the reaction conditions, J. Phys. Chem. B, 2005, 109, 17467–17473.

    Article  CAS  PubMed  Google Scholar 

  46. W. Mao, J. Guo, W. Yang, C. Wang, J. He and J. Chen, Synthesis of high-quality near-infrared-emitting CdTeS alloyed quantum dots via the hydrothermal method, Nanotechnology, 2007, 18, 485611.

    Article  CAS  Google Scholar 

  47. W.W. Yu, L. Qu, W. Guo and X. Peng, Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals, Chem. Mater., 2003, 15, 2854–2860.

    Article  CAS  Google Scholar 

  48. A. Williams and I. T. Ibrahim, Carbodiimide chemistry: Recent advances, Chem. Rev., 1981, 81, 589–636.

    Article  CAS  Google Scholar 

  49. A. C. Templeton, D. E. Cliffel and R. W. Murray, Redox and fluorophore functionalization of water-soluble, Tiopronin-protected gold clusters, J. Am. Chem. Soc., 1999, 121, 7081–7089.

    Article  CAS  Google Scholar 

  50. Y. Wang, J. Zheng, Z. Zhang, C. Yuan and D. Fu, CdTe nanocrystals as luminescent probes for detecting ATP, folic acid and l-cysteine in aqueous solution, Colloids Surf., A, 2009, 342, 102–106.

    Article  CAS  Google Scholar 

  51. K. Manzoor, S. Johny, D. Thomas, S. Setua, D. Menon and S. Nair, Bioconjugated luminescent quantum dots of doped ZnS: A cyto-friendly system for targeted cancer imaging, Nanotechnology, 2009, 20, 065102.

    Article  PubMed  CAS  Google Scholar 

  52. J. Liang, S. Huang, D. Zeng, Z. He, X. Ji, X. Ai and H. Yang, CdSe quantum dots as luminescent probes for spironolactone determination, Talanta, 2006, 69, 126–130.

    Article  CAS  PubMed  Google Scholar 

  53. J. K. Jaiswal, H. Mattoussi, J. M. Mauro and S. M. Simon, Long-term multiple color imaging of live cells using quantum dot bioconjugates, Nat. Biotechnol., 2002, 21, 47–51.

    Article  PubMed  CAS  Google Scholar 

  54. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise and W. W. Webb, Water-soluble quantum dots for multiphoton fluorescence imaging in vivo, Science, 2003, 300, 1434–1436.

    Article  CAS  PubMed  Google Scholar 

  55. W. C. W. Chan, D. J. Maxwell, X. Gao, R. E. Bailey, M. Han and S. Nie, Luminescent quantum dots for multiplexed biological detection and imaging, Curr. Opin. Biotechnol., 2002, 13, 40–46.

    Article  CAS  PubMed  Google Scholar 

  56. P. Alivisatos, The use of nanocrystals in biological detection, Nat. Biotechnol., 2003, 22, 47–52.

    Article  CAS  Google Scholar 

  57. J. Zheng, A. A. Ghazani, Q. Song, S. Mardyani, W. C.W. Chan and C. Wang, Cellular imaging and surface marker labeling of hematopoietic cells using quantum dot bioconjugates, Lab. Hematol., 2006, 12, 94–98.

    Article  CAS  PubMed  Google Scholar 

  58. L. Braydich-Stolle, S. Hussain, J. J. Schlager and M. C. Hofmann, In vitro cytotoxicity of nanoparticles in mammalian germline stem cells, Toxicol. Sci., 2005, 88, 412–419.

    Article  CAS  PubMed  Google Scholar 

  59. R. Hardman, A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors, Environ. Health Perspect., 2006, 114, 165–172.

    Article  PubMed  Google Scholar 

  60. S. C. Hsieh, F. F. Wang, S. C. Hung, Y. J. Chen and Y. J. Wang, The internalized CdSe/ZnS quantum dots impair the chondrogenesis of bone marrow mesenchymal stem cells, J. Biomed. Mater. Res. B, 2006, 79, 95–101.

    Article  CAS  Google Scholar 

  61. J. Lovric, S. J. Cho, F. M. Winnik and D. Maysinger, Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death, Chem. Biol., 2005, 12, 1227–1234.

    Article  CAS  PubMed  Google Scholar 

  62. O. Seleverstov, O. Zabirnyk, M. Zscharnack, L. Bulavina, M. Nowicki, J. M. Heinrich, M. Yezhelyev, F. Emmrich, R. O’Regan and A. Bader, Quantum dots for human mesenchymal stem cells labeling, a sizedependent autophagy activation, Nano Lett., 2006, 6, 2826–2832.

    Article  CAS  PubMed  Google Scholar 

  63. W. H. Chan, N. H. Shiao and P. Z. Lu, CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondrial-dependent pathways and inhibition of survival signals, Toxicol. Lett., 2006, 167, 191–200.

    Article  CAS  PubMed  Google Scholar 

  64. A. O. Choi, S. J. Ju, J. Desbarats, J. Lovrić and D. Maysinger, Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells, J. Nanobiotechnol., 2007, 5, 1477–1490.

    Article  CAS  Google Scholar 

  65. J. Lovrić, H. S. Bazzi, Y. Cuie, G. R. A. Fortin, F. M. Winnik and D. Maysinger, Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots, J. Mol. Med., 2005, 83, 377–385.

    Article  PubMed  Google Scholar 

  66. A. M. Derfus, W. C. W. Chan and S. N. Bhatia, Probing the Cytotoxicity of Semiconductor Quantum Dots, Nano Lett., 2004, 4, 11–18.

    Article  CAS  PubMed  Google Scholar 

  67. L. E. Rikans and T. Yamano, Mechanisms of cadmium-mediated acute hepatotoxicity, J. Biochem. Mol. Toxicol., 2000, 14, 110–117.

    Article  CAS  PubMed  Google Scholar 

  68. G. A. Lewis, D. Mathieu and R. Phan-Tan-Luu, Pharmaceutical Experimental Design, Marcel Dekker, 2005.

    Google Scholar 

  69. A. Abuchowski, T. Van Es, N. C. Palczuk and F. F. Davis, Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol, J. Biol. Chem., 1977, 252, 3578–3581.

    Article  CAS  PubMed  Google Scholar 

  70. T. M. Allen, G. A. Austin, A. Chonn, L. Lin and K. C. Lee, Uptake of liposomes by cultured mouse bone marrow macrophages: Influence of liposome composition and size, Biochim. Biophys. Acta, Biomembr., 1991, 1061, 56–64.

    Article  CAS  Google Scholar 

  71. T. J. Daou, L. Li, P. Reiss, V. Josserand and I. Texier, Effect of poly(ethylene glycol) length on the in vivo behavior of coated quantum dots, Langmuir, 2009, 25, 3040–3044.

    Article  CAS  PubMed  Google Scholar 

  72. A. Gabizon, H. Shmeeda and Y. Barenholz, Pharmacokinetics of pegylated liposomal doxorubicin:Reviewof animal and human studies, Clin. Pharmacokinet., 2003, 42, 419–436.

    Article  CAS  PubMed  Google Scholar 

  73. G. Kostenich, N. Livnah, T. A. Bonasera, T. Yechezkel, Y. Salitra, P. Litman, S. Kimel and A. Orenstein, Targeting small-cell lung cancer with novel fluorescent analogs of somatostatin, Lung Cancer, 2005, 50, 319–328.

    Article  PubMed  Google Scholar 

  74. A. Engel, S. K. Chatterjee, A. Al-Arifi and P. Nuhn, Influence of Spacer Length on the Agglutination ofGlycolipid-Incorporated Liposomes by ConA as Model Membrane, J. Pharm. Sci., 2003, 92, 2229–2235.

    Article  CAS  PubMed  Google Scholar 

  75. C. M. Paulos, J. A. Reddy, C. P. Leamon, M. J. Turk and P. S. Low, Ligand binding and kinetics of folate receptor recycling in vivo: Impact on receptor-mediated drug delivery, Mol. Pharmacol., 2004, 66, 1406–1414.

    Article  CAS  PubMed  Google Scholar 

  76. B. I. Ipe, M. Lehnig and C. M. Niemeyer, On the generation of free radical species from quantum dots, Small, 2005, 1, 706–709.

    Article  CAS  PubMed  Google Scholar 

  77. W. H. Chan, N. H. Shiao and P. Z. Lu, CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondrial-dependent pathways and inhibition of survival signals, Toxicol. Lett., 2006, 167, 191–200.

    Article  CAS  PubMed  Google Scholar 

  78. S. J. Clarke, C. A. Hollmann, Z. Zhang, D. Suffern, S. E. Bradforth, N. M. Dimitrijevic, W. G. Minarik and J. L. Nadeau, Photophysics of dopamine-modified quantum dots and effects on biological systems, Nat. Mater., 2006, 5, 409–417.

    Article  CAS  PubMed  Google Scholar 

  79. D. R. Cooper, N.M. Dimitrijevic and J. L. Nadeau, Photosensitization of CdSe/ZnS QDs and reliability of assays for reactive oxygen species production, Nanoscale, 2010, 2, 114–121.

    Article  CAS  PubMed  Google Scholar 

  80. M. T. Jarvi, M. J. Niedre, M. S. Patterson and B. C. Wilson, Singlet Oxygen Luminescence Dosimetry (SOLD) for photodynamic therapy: Current status, challenges and future prospects, Photochem. Photobiol., 2006, 82, 1198–1210.

    Article  CAS  PubMed  Google Scholar 

  81. A. A. Krasnovsky Jr., Singlet molecular oxygen in photobiochemical systems: IR phosphorescence studies, Membr. Cell Biol., 1998, 12, 665–690.

    PubMed  Google Scholar 

  82. M. Niedre, M. S. Patterson and B. C. Wilson, Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo, Photochem. Photobiol., 2002, 75, 382–391.

    Article  CAS  PubMed  Google Scholar 

  83. C. Flors, M. J. Fryer, J. Waring, B. Reeder, U. Bechtold, P. M. Mullineaux, S. Nonell, M. T. Wilson and N. R. Baker, Imaging the production of singlet oxygen in vivo using a new fluorescent sensor, Singlet Oxygen Sensor Green®, J. Exp. Bot., 2006, 57, 1725–1734.

    Article  CAS  PubMed  Google Scholar 

  84. M. Price, J. J. Reiners, A. M. Santiago and D. Kessel, Monitoring singlet oxygen and hydroxyl radical formation with fluorescent probes during photodynamic therapy, Photochem. Photobiol., 2009, 85, 1177–1181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. S. Basu-Modak and R. M. Tyrrell, Singlet oxygen: A primary effector in the ultraviolet A/near-visible light induction of the human heme oxygenase gene, Cancer Res., 1993, 53, 4505–4510.

    CAS  PubMed  Google Scholar 

  86. Y. Li, M. A. Trush and J. D. Yager, DNA damage caused by reactive oxygen species originating from a copper-dependent oxidation of the 2-hydroxy catechol of estradiol, Carcinogenesis, 1994, 15, 1421–1427.

    Article  CAS  PubMed  Google Scholar 

  87. L. K. Verna, D. Chen, G. Schluter and G. M. Williams, Inhibition by singlet oxygen quenchers of oxidative damage to DNA produced in cultured cells by exposure to a quinolone antibiotic and ultraviolet a irradiation, Cell Biology and Toxicology, 1998, 14, 237–242.

    Article  CAS  PubMed  Google Scholar 

  88. M. Linetsky and B. J. Ortwerth, Quantitation of the reactive oxygen species generated by the UVA irradiation of ascorbic acid-glycated lens proteins, Photochem. Photobiol., 1996, 63, 649–655.

    Article  CAS  PubMed  Google Scholar 

  89. A. M. Wade and H. N. Tucker, Antioxidant characteristics of Lhistidine, J. Nutr. Biochem., 1998, 9, 308–315.

    Article  CAS  Google Scholar 

  90. Y. Guo, L. Wang, L. Yang, J. Zhang, L. Jiang and X. Ma, Optical and photocatalytic properties of arginine-stabilized cadmium sulfide quantum dots, Mater. Lett., 2011, 65, 486–489.

    Article  CAS  Google Scholar 

  91. B. I. Ipe and C. M. Niemeyer, Nanohybrids composed of quantum dots and cytochrome P450 as photocatalysts, Angew. Chem., Int. Ed., 2006, 45, 504–507.

    Article  CAS  Google Scholar 

  92. V. Rajendran, M. Lehnig and C. M. Niemeyer, Photocatalytic activity of colloidal CdS nanoparticles with different capping ligands, J.Mater. Chem., 2009, 19, 6348–6353.

    Article  CAS  Google Scholar 

  93. K. Rajeshwar, N. R. De Tacconi and C. R. Chenthamarakshan, Semiconductor-based composite materials: Preparation, properties, and performance, Chem. Mater., 2001, 13, 2765–2782.

    Article  CAS  Google Scholar 

  94. Z. Cui, D. Zeng, T. Tang, J. Liu and C. Xie, Enhanced visible light photocatalytic activity of QDS modified Bi 2WO6 nanostructures, Catal. Commun., 2010, 11, 1054–1057.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muriel Barberi-Heyob.

Additional information

This article is published as part of a themed issue on immunological aspects and drug delivery technologies in PDT.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morosini, V., Bastogne, T., Frochot, C. et al. Quantum dot-folic acid conjugates as potential photosensitizers in photodynamic therapy of cancer. Photochem Photobiol Sci 10, 842–851 (2011). https://doi.org/10.1039/c0pp00380h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00380h

Navigation