Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Parameter estimation in ordinary differential equations for biochemical processes using the method of multiple shooting

Parameter estimation in ordinary differential equations for biochemical processes using the method of multiple shooting

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In silico investigations by simulating dynamical models of biochemical processes play an important role in systems biology. If the parameters of a model are unknown, results from simulation studies can be misleading. Such a scenario can be avoided by estimating the parameters before analysing the system. Almost all approaches for estimating parameters in ordinary differential equations have either a small convergence region or suffer from an immense computational cost. The method of multiple shooting can be situated in between of these extremes. In spite of its good convergence and stability properties, the literature regarding the practical implementation and providing some theoretical background is rarely available. All necessary information for a successful implementation is supplied here and the basic facts of the involved numerics are discussed. To show the performance of the method, two illustrative examples are discussed.

References

    1. 1)
      • C. Fröberg . (1969) Introduction to numerical analysis.
    2. 2)
      • J. Timmer , T.G. Müller , I. Swameye , O. Sandra , U. Klingmüller . Modelling the nonlinear dynamics of cellular signal transduction. Int. J. Bif. Chaos , 2053 - 2060
    3. 3)
      • H.G. Bock , P. Deuflhard , E. Hairer . (1983) Recent advances in parameter identification techniques for ordinary differential equations, Numerical treatment of inverse problems in differential and integral equations.
    4. 4)
      • H.H. von Grünberg , M. Peifer , J. Timmer , M. Kollmann . Variations in substitution rate in human and mouse genomes. Phys. Rev. Lett.
    5. 5)
      • I. Swameye , T.G. Müller , J. Timmer , O. Sandra , U. Klingmüller . Identification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by data-based modeling. Proc. Natl. Acad. Sci. , 1028 - 1033
    6. 6)
      • A. Törn , M. Ali , S. Viitanen . Stochastic global optimization: problem classes and solution techniques. J. Glob. Optim.
    7. 7)
      • W.H. Press , S.A. Teukolsky , W.T. Vetterling , B.P. Flannery . (1992) Numerical recipes.
    8. 8)
      • W. Horbelt , J. Timmer , M. Bünner , R. Meucci , M. Ciofini . Identifying physically properties of a CO2 laser by dynamical modeling of measured time series. Phys. Rev. E
    9. 9)
    10. 10)
      • J.R. Banga , W.D. Seider , C.A. Floudas , P.M. Pardalos . (1996) Global optimization of chemical processes using stochastic algorithms, State of the art in global optimization.
    11. 11)
      • Bock, H.G.: `Randwertproblemmethoden zur parameteridenti fizierung in systemen nichtlinearer differentialgleichungen', 1987, PhD, Universität Bonn.
    12. 12)
      • K.R. Godfray , J.J. DiStefano , E. Walter . (1985) Identifiability of model parameters, Identification and system parameter estimation.
    13. 13)
      • H.U. Voss , M. Peifer , W. Horbelt , H. Rust , J. Timmer , G. Gousebet . (2003) Identification of chaotic systems from experimental data, Chaos and its reconstruction.
    14. 14)
      • J. Stoer . On the numerical solution of constrained least squares. SIAM J. Numer. Anal. , 282 - 411
    15. 15)
      • A.H.G. Rinnooy-Kan , G.T. Timmer . Stochastic global optimization methods. Part I: Clustering methods. Math. Prog. , 27 - 56
    16. 16)
      • Kuhn, H., Tucker, A.: `Nonlinear programming', Proc. 2nd Berkeley Symp. on Mathematical Statistics and Probabilistics, 1951, University of California Press, p. 481–492.
    17. 17)
    18. 18)
      • Horbelt, W.: `Maximum likelihood estimation in dynamical systems', 2001, PhD, University of Freiburg, Available at http://webber.physik.uni-freiburg.de/ horbelt/diss.
    19. 19)
      • T.G. Müller , J. Timmer . Parameter identification techniques for partial differential equations. Int. J. Bif. Chaos , 2053 - 2060
    20. 20)
      • S. Schuster , M. Marhl , T. Höfer . Modelling of simple and complex calcium oscillations. Eur. J. Biochem. , 1333 - 1355
    21. 21)
      • C.T. Kelley . (1999) Iterative methods for optimization.
    22. 22)
      • E. Hairer , S.P. Nørsett , G. Wanner . (1993) Solving ordinary differential equations. I: Nonstiff problems.
    23. 23)
    24. 24)
      • A. Griewank , D. Juedes , J. Utke . Algorithm 755: ADOL-C: a package for the automatic differentiation of algorithms written in C/C++. ACM Trans. Math. Softw. , 131 - 167
    25. 25)
      • R.J. Hanson , K.H. Haskell . Algorithm 587: two algorithms for the linearly constrained least squares problem. ACM Trans. Math. Softw. , 323 - 333
    26. 26)
    27. 27)
      • K. Schittkowski . (2002) Numerical data fitting in dynamical systems.
    28. 28)
      • K.A. Levenberg . A method for the solution of certain nonlinear problems in least squares. Quart. Appl. Math. , 164 - 168
    29. 29)
      • Z.B. Zabinsky , R.L. Smith . Pure adaptive search in global optimization. Math. Prog. , 323 - 338
    30. 30)
      • J. Timmer , H. Rust , W. Horbelt , H.U. Voss . Parameteric, nonparametric and parametric modelling of a chaotic circuit time series. Phys. Lett. A , 123 - 134
    31. 31)
      • A.W. van der Vaart . (1998) Asymptotic statistics.
    32. 32)
      • O. Richter , P. Nörtersheuser , W. Pestemer . Non-linear parameter estimation in pesticide degradation. Sci. Total Environ. , 435 - 450
    33. 33)
      • T. Lohmann , H.G. Bock , J.P. Schlöder . Numerical methods for parameter estimation and optimal experimental design in chemical reaction systems. Ind. Eng. Chem. Res. , 54 - 57
    34. 34)
      • J.R. Banga , C.G. Moles , A.A. Alonso , C.A. Floudas , P.M. Pardalos . (2003) Global optimization of bioprocesses using stochastic and hybrid methods, Frontiers in global optimization.
    35. 35)
      • C.H. Bischof , A. Carle , G.F. Corliss , A. Griewank , P. Hovland . ADIFOR: generating derivative code from Fortran programs. Sci. Program. , 11 - 29
    36. 36)
      • N. Noykova , T.G. Müller , M. Gyllenberg , J. Timmer . Quantitative analysis of anaerobic wastewater treatment processes: identifiability and parameter estimation. Biotech. Bioeng. , 89 - 103
    37. 37)
      • H.G. Bock , K. Ebert , P. Deuflhard , W. Jäger . (1981) Numerical treatment of inverse problems in chemical reaction kinetics, Modelling of chemical reaction systems.
    38. 38)
    39. 39)
      • D.R. Cox , D.V. Hinkley . (1979) Theoretical statistics.
    40. 40)
      • J.H. Holland . (1992) Adaption in natural and artificial systems.
    41. 41)
      • L. Ljung , T. Glad . On global identifiability for arbitrary model parameterization. Automatica , 265 - 276
    42. 42)
    43. 43)
    44. 44)
      • A. Bellen , M. Zennaro . (2003) Numerical methods for delay differential equations.
    45. 45)
      • U. Kummer , L.F. Olsen , C.J. Dixon , A.K. Green , E. Bornberg-Bauer , G. Baier . Switching from simple to complex oscillations in calcium signaling. Biophys. J. , 1188 - 1195
    46. 46)
      • A.D. Stribet , P. Rosenau , A.C. Ströder , R.J. Strasser . Parameter optimisation of fast chlorophyll fluorescence induction model. Math. Comput. Simul. , 443 - 450
    47. 47)
      • T.G. Müller , J. Timmer . Fitting parameters in partial differential equations from partially observed noisy data. Phys. D , 1 - 7
    48. 48)
      • D.W. Marquardt . An algorithm for least-squares-estimation of nonlinear problems in least squares. SIAM J. Appl. Math , 431 - 441
    49. 49)
    50. 50)
      • K.E. Brenan , S.L. Campbell , L.R. Petzold . (1989) The numerical solution of initial value problems in differential-algebraic equations.
    51. 51)
      • C. Bauer , A. Frink , R. Kreckel . Introduction to the GiNaC framework for symbolic computation within the C++ programming language. J. Symbolic Com. , 1 - 12
    52. 52)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb_20060067
Loading

Related content

content/journals/10.1049/iet-syb_20060067
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address