Skip to main content
Log in

Identification of the proteome complement of high royal jelly producing bees (Apis mellifera) during worker larval development

Analyse du protéome, lors du développement larvaire, des ouvrières d’une lignée d’abeilles (Apis mellifera) produisant de grandes quantités de gelée royale

Analyse des Proteoms der Larvalentwicklung von Arbeiterinnen einer Zuchtlinien der Honigbiene (Apis mellifera), die in hohen Mengen Gelée Royale produziert

  • Original Article
  • Published:
Apidologie Aims and scope Submit manuscript

Abstract

To investigate the composition and function of the proteome during larval development of worker bees from a strain of Apis mellifera L. artificially selected for increased royal jelly yield, proteins were partially identified by two-dimensional gel electrophoresis, mass spectrometry and protein engine identification tools that were applied to the honeybee genome. Out of 48 high abundance proteins selected for MS fingerprinting, 22 could be identified as representing annotated genes of the honey bee. These including 9 nutrient related proteins, 6 proteins associated with carbohydrate metabolism and energy production, 3 heat shock proteins, 4 other proteins related to the metabolism of amino acids, fatty acid metabolism, larval growth and cell cycle, respectively.

Zusammenfassung

Mit der Verfügbarkeit des komplett sequenzierten und annotierten Genoms der Honigbiene liegen jetzt Proteomanalysen im Rahmen der Möglichkeit. Obwohl einzelne Gene, Proteine und Enzyme des Metabolismus bereits seit einiger Zeit intensiv untersucht werden, stecken generelle Proteomanalysen, z.B. zum Proteom der Larvalentwicklung, noch in den Kinderschuhen. Ziel dieser Studie war eine systematische Untersuchung der Proteine, die in diesem Entwicklungsprozess eine Rolle spielen. Der experimentelle Ansatz bestand in einer zweidimensionalen elektrophoretischen Auftrennung gefolgt von MALDI-TOF Analysen der einzelnen Proteinspots.

Aus der Gesamtzahl der Proteine, die in der Larvalentwicklung zu finden waren, identifizierten wir 22 Spots (Abb. 1; Tab. I). Diese umfassten 9 Nahrungsproteine, 6 Proteine mit Bezug zum Kohlenhydratstoffwechsel und zur Energieproduktion, 3 Hitzeschockproteine, sowie 4 weitere Proteine mit Bezug zum Aminosäurenstoffwechsel, Fettsäurenstoffwechsel, Zellzyklus und zur Larvalentwicklung allgemein. Einige der hier identifizierten Proteine (z.B. die Gelée Royal Proteine) stammen vermutlich aus dem Darm und stellen so einen Teil der Larvennahrung dar, aber nicht des larvalen Proteoms im eigentlichen Sinne.

Das Larvale Serumprotein 2 findet sich vor allem an Tag 6 der Entwicklung stark angereichert und könnte eine Rolle in der Speicherung von Aminosäuren für die Metamorphose spielen (Abb. 1 und 2). Vier der im Kohlenhydratstoffwechsel und der Energieproduktion wichtigen Proteine, Enolase, Argininkinase, Aldehyddehydrogenase und Phosphoglyzeromutase zeigten eine ansteigende Expression in der Entwicklung (Abb. 1 und 2). ATP-Synthase zeigte ein unverändertes Expressionsmuster, während der Vorläufer einer alpha-Kette der mitochondrialen ATP-Synthase zunehmend weniger exprimiert wird. Diese Befunden deuten darauf hin, dass die Entwicklung energieabhängig ist. Die Persistenz von Hitzeschockproteinen im larvalen Proteom (des mitochondrialen Vorläufers eines 60 kDa Hsp, des Hitzeschock-ähnlichen Proteins 3 und der Isoform 1 des Hitzeschockproteins 8) kann mit ihrer Rolle in der Proteinfaltung erklärt werden (Abb. 1 und 2). Das Protein Lethal (2) 37Cc spielt in der DNA-Reparatur und im Zellzyklus eine Rolle und ist hier vermutlich für den larvalen Stoffwechsel und den Übergang zur Puppenphase von Bedeutung. Der mit dem Aminosäuren- und Nitratstoffwechsel in Verbindung stehende Vorläufer des Enzyms Ornithin-Aminotransferase und das im Fettstofwechsel wichtige Fettsäuren-Bindungsprotein zeigten beide einen Anstieg der Expression im Verlauf der Larvalentwicklung (Abb. 1 und 2).

Diese Ergebnisse zeigen einerseits, dass die Larvalentwicklung ein dynamischer Prozess ist, der eine Vielzahl an Proteinen mit unterschiedlichen Funktionen erfordert. Andererseits sind dies jedoch nur vorläufig Ergebnisse, da nur ein kleiner Teil der Proteinspots tatsächlich identifiziert werden konnte, und somit weitere Untersuchungen erforderlich sind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abrahams J.P., Leslie A.G., Lutter R., Walker J.E. (1994) Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria, Nature 370, 621–628.

    Article  PubMed  CAS  Google Scholar 

  • Amdam G.V., Omholt S.W. (2002) The regulatory anatomy of honeybee lifespan, J. Theor. Biol. 216, 209–228.

    Article  PubMed  Google Scholar 

  • Asencot M., Lensky Y. (1976) The effect of sugar and juvenile hormone on the differentiation of the female honeybee larvae (Apis mellifera L.) to queens, Life Sci. 18, 693–700.

    Article  PubMed  CAS  Google Scholar 

  • Beetsma J. (1979) The process of queen-worker differentiation in the honeybee, Bee World 60, 24–39.

    CAS  Google Scholar 

  • Binder R.J. (2006) Heat shock protein vaccines: from bench to bedside, Int. Rev. Immunol. 25, 353–375.

    Article  PubMed  CAS  Google Scholar 

  • Black B.C., Pentz E.S., Wright T.R. (1987) The alpha methyl dopa hypersensitive gene l(2)amd, and two adjacent genes in Drosophila melanogaster: physical location and direct effects of amd on catecholamine metabolism, Mol. Gen. Genet. 209, 306–312.

    Article  PubMed  CAS  Google Scholar 

  • Bradford M.M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding, Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Brian M.V. (1979) Caste differentiation and division of labor, in: Hermann H.R. (Ed.), Social Insects, New York, London, Academic Press, pp. 121–221.

    Google Scholar 

  • Chander M., Lamani M. (1999) Structural studies on a 2,3-diphosphogly-cerate independent phosphoglycerate mutase from Bacillys stearothermophilus. J. Struct. Biol. 126, 156–165.

    Article  PubMed  CAS  Google Scholar 

  • Cheng M.Y., Hartl F.U., Horwich A.L. (1990) The mitochondrial chaperonin HSP60 is required for its own assembly, Nature 348, 455–458.

    Article  PubMed  CAS  Google Scholar 

  • Evans J., Wheeler D. (1999) Differential gene expression between developing queens and workers in the honey bee, Apis mellifera, Proc. Natl. Acad. Sci. USA 96, 5575–5580.

    Article  PubMed  CAS  Google Scholar 

  • Evans J., Wheeler D. (2000) Expression profiles during honeybee caste determination, Genome Biol. 2, 1–6.

    Article  Google Scholar 

  • Folch-Mallol J.L., Garay-Arroyo A., Lledias F., Covarrubias R.A.A. (2004) The stress response in the yeast Saccharomyces cerevisiae, Rev. Latinoam Microbiol. 46, 24–46.

    PubMed  Google Scholar 

  • Goldfarb S., Kashlan O., Watkins J., Suaud L., Yan W., Kleyman T., Rubenstein R. (2006) Differential effects of Hsc70 and Hsp70 on the intracellular trafficking and functional expression of epithelial sodium channels, Proc. Natl. Acad. Sci. USA 103, 5817–22.

    Article  PubMed  CAS  Google Scholar 

  • Heisenberg M. (2004) Mushroombody memoir: from maps to models, Nature 4, 266–275.

    Google Scholar 

  • Hepperle C., Hartfelder K. (2001) Differentially expressed regulatory genes in honey bee caste development, Naturwissenschaften 88, 113–116.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch C., Gauss R., Sommer T. (2006) Coping with stress: cellular relaxation techniques, Trends Cell Biol. 16, 657–663.

    Article  PubMed  CAS  Google Scholar 

  • Holt A., Wold F. (1961) The isolation and characterization of rabbit muscle enolase, J. Biol. Chem. 236, 3227–3231.

    PubMed  CAS  Google Scholar 

  • Johnson R.B., Fearon K., Mason T., Jindal S. (2003) Cloning and characterization of the yeast chaperonin Hsp60 gene, Gene 84, 295–302.

    Article  Google Scholar 

  • Jowett T. (1985) The regulatory domain of a larval serum protein gene in Drosophila melanogaster, J. Exp. Mar. Biol. Ecol. 4, 3789–3795.

    CAS  Google Scholar 

  • Kaikaus R.M., Bass N.M., Ockner R.K. (1990) Functions of fatty acid-binding proteins, Experientia 46, 617–630.

    Article  PubMed  CAS  Google Scholar 

  • Kajiwara H., Ito Y., Imamaki A., Nakamura M., Mita K., Ishizaka M. (2005) Protein profile of silkworm midgut of fifth-instar day-3 larvae, J. Electrophoresis 49, 61–69.

    Article  CAS  Google Scholar 

  • Kozlova T., Perezgasga L., Reynaud E., Zurita M. (1997) The Drosophila melanogaster homologue of the hsp60 gene is encoded by the essential locus L(1)10Ac and is differentially expressed during fly development, Dev. Genes Evol. 207 253–263.

    Article  CAS  Google Scholar 

  • Kucharski R., Maleszka R. (1998) Arginine kinase is highly expressed in the compound eye of the honey bee, Apis mellifera, Gene 211, 343–349.

    Article  PubMed  CAS  Google Scholar 

  • Kucharski R., Maleszka R. (2002) Evaluation of differential gene expression during behavioral development in the honeybee using microarrays and northern blots, Genome Biol. [online] http://genomebiology.com/2002/3/2/research/0007 (accessed on 5 November 2007).

  • Kucharski R., Maleszka R., Hayward D.C., Ball E.E. (1998) A royal jelly protein is expressed in a subset of Kenyon cells in the mushroom bodies of the honey bee brain, Naturwissenschaften 85, 343–346.

    Article  PubMed  CAS  Google Scholar 

  • Lensky Y., Baehr J.C., Porcheron P. (1978) Dosages radioimmunologiques des ecdysones et des hormones juvéniles au cours du développement post embryonnaire chez les ouvrières et les reines d’abeille (Apis mellifera L. var ligustica), C.R. Acad. Sci. Paris 287, 821–824.

    CAS  Google Scholar 

  • Li J.K. (2000) Technology for royal jelly production, Am. Bee J. 140, 469–472.

    Google Scholar 

  • Li J.K., Chen S.L. (2003) Royal jelly and human health, Am. Bee J. 143, 398–402.

    Google Scholar 

  • Li J.K., Chen S.L., Zhong B.X., Su S.K. (2003) Optimizing royal jelly production, Am. Bee J. 143, 221–223.

    Google Scholar 

  • Lindquist S., Craig E.A. (1988) The heat-shock proteins, Annu. Rev. Genet. 22, 631–677.

    Article  PubMed  CAS  Google Scholar 

  • McCrady E., Tolin D.J. (1994) Effects of Ddc cluster lethal alleles on ovary growth, attachment, and egg production in Drosophila, J. Exp. Zool. 268, 469–476.

    Article  PubMed  CAS  Google Scholar 

  • Miara S., Crosby M.A., Mungall C.J., Matthews B.B. (2002) Annotation of the Drosophila melanogaster euchromatic genome: a systematic review, Genome Biol. 3, 22.

    Google Scholar 

  • Pereira F.A., Tsai M.J., Tsai S.Y. (2000) COUP-TF orphan nuclear receptors in development and differentiation, Cell Mol. Life Sci. 57, 1388–1398.

    Article  PubMed  CAS  Google Scholar 

  • Rachinsky A., Strambi C., Strambi A. Hartfelder K. (1990) Caste and metamorphosis: Hemolymph titers of juvenile hormone and ecdysone in last instar honeybee larvae, Gen. Comp. Endocr. 79, 31–38.

    Article  PubMed  CAS  Google Scholar 

  • Rembold H. (1987) Caste specific modulation of juvenile hormone titers in Apis mellifera, Insect Biochem. 17, 1003–1006.

    Article  CAS  Google Scholar 

  • Robinson G.E., Grozinger C.M., Whitfield C.W. (2005) Sociogenomics: social life in molecular terms, Nat. Rev. Genet. 6, 257–271.

    Article  PubMed  CAS  Google Scholar 

  • Sabbert D., Engelbrecht S., Junge W. (1997) Functional and idling rotatory motion within F-1-ATPase, Proc. Natl. Acad. Sci. USA 94, 4401–4405.

    Article  PubMed  CAS  Google Scholar 

  • Santos K.S., Santos L.D., Mendes M.A., Souza B.M., Malaspina O., Palma M.S. (2005) Profiling the proteome complement of the secretion from hypopharyngeal gland of Africanized nurse-honeybees (Apis mellifera L.), Insect Mol. Biol. 35, 85–91.

    Article  CAS  Google Scholar 

  • Schippers M.P., Dukas R., Smith R.W., Wang J., Smolen K., McClelland G.B. (2006) Lifetime performance in foraging honeybees: behaviour and physiology, J. Exp. Biol. 209, 3828–3836.

    Article  PubMed  Google Scholar 

  • Seeley T.D. (1983) The ecology of the temperate and tropical honey bee societies, Am. Sci. 71, 264–272.

    Google Scholar 

  • Shuel R.W., Dixon S.E. (1968) Respiration in developing honeybee larvae, J. Apic. Res. 7, 11–19.

    Google Scholar 

  • Stabe H.A. (1930) The rate of growth of worker, drone and queen larvae of the honeybee, Apis mellifera, J. Econ. Entomol. 23, 447–453.

    Google Scholar 

  • The Honeybee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee, Apis mellifera, Nature 443, 931–949.

    Article  Google Scholar 

  • Wang D.I. (1965) Growth rates of young queen and worker honeybee larvae, J. Apic. Res. 4, 3–5.

    Google Scholar 

  • Weaver N. (1966) Physiology of caste determination, Annu. Rev. Entomol. 11, 79–102.

    Article  PubMed  CAS  Google Scholar 

  • Webb B., Riddiford L. (1988) Synthesis of two storage proteins during larval development of the tobacco hornworm, Manduca Sexta, Dev. Biol. 130, 671–681.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler D.E., Buck N., Evans J.D. (2006) Expression of insulin pathway genes during the period of caste determination in the honey bee, Apis mellifera, Insect Mol. Biol. 15, 597–602.

    Article  PubMed  CAS  Google Scholar 

  • Whitfield C.W., Band M.R., Bonaldo M.F., Kumar C.G., Liu L., Pardinas J.R., Robertson H.M., Soares M.B., Robinson G.E. (2002) Annotated expressed sequence tags and cDNA microarrays for studies of brain and behavior in the honey bee, Genome Res. 12, 555–566.

    Article  PubMed  Google Scholar 

  • Willott E., Wang X.Y., Wells M.A. (1989) cDNA and gene sequence of Manduca sexta arylphorin, an aromatic amino acid-rich larval serum protein, J. Biol. Chem. 264, 19052–19059.

    PubMed  CAS  Google Scholar 

  • Winston T.D. (1979) Intra-colony demography and reproductive rate of the Africanized honeybee in South America, Behav. Ecol. Sociobiol. 12, 78–92.

    Google Scholar 

  • Wirtz P., Beetsma J. (1972). Induction of caste differentiation in the honey bee (Apis mellifera) by juvenile hormone, Entomol. Exp. Appl. 15, 517–520.

    Article  CAS  Google Scholar 

  • Wright T.R.F. (1996) Phenotypic analysis of the Dopa decarboxylase gene cluster mutants in Drosophila melanogaster, J. Hered. 87, 175–190.

    PubMed  CAS  Google Scholar 

  • Yoshida K.M., Juni N., Hori S.H. (1997) Molecular cloning and characterization of Drosophila ornithine aminotransferase gene, Genes Genet. Syst. 72, 9–17.

    Article  PubMed  CAS  Google Scholar 

  • Zhong B.X., Li J.K., Lin J.R., Liang J.S., Su S.K., Xu H.S., Yan H.Y., Zhang P.B., Fu J.H. (2005) Possible effect of 30K proteins in embryonic development of silkworm Bombyx mori, Acta Biochem. Biophys. Sin 37, 355–361.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinghong Pan.

Additional information

Manuscript editor: Marla Spivak

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Li, H., Zhang, Z. et al. Identification of the proteome complement of high royal jelly producing bees (Apis mellifera) during worker larval development. Apidologie 38, 545–557 (2007). https://doi.org/10.1051/apido:2007047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/apido:2007047

Navigation