Skip to main content
Log in

Identification of the proteome complement of hypopharyngeal glands from two strains of honeybees (Apis mellifera)

Identification du protéome des glandes hypopharyngiennes de deux lignées d’abeilles domestiques (Apis mellifera)

Analyse des Proteoms der Hypopharynxdrüsen von zwei Zuchtlinien der Honigbiene (Apis mellifera)

  • Original Article
  • Published:
Apidologie Aims and scope Submit manuscript

Abstract

We investigated the protein complement of the hypopharyngeal gland (HG) of winter worker bees from a strain of Apis mellifera artificially selected for increased royal jelly yield and A. m. carnica winter worker bees. Proteins were partially identified using two-dimensional gel electrophoresis (2-DE). MALDI-TOF MS and protein engine identification tools that were utilized for the honeybee genome. Most identified proteins in the two bees strains were assigned to major royal jelly (RJ) proteins (MRJPs). Marked differences were found in the heterogeneity of the MRJPs, in particular MRJP3. Two of the proteins, α-glucosidase and glucose oxidase, were related to carbohydrate metabolism and energy. For the first time in the HG of honeybees, two proteins, peroxiredoxin and thioredoxin peroxidase, which are related to antioxidation functions, and actin 5C, a major cytoskeletal actin protein which may supply enough actin for normal function of cells, have been identified. Results suggest that the HGs serve a storage function in winter and that during the winter period the HG of high RJ producing bees store more proteins than those of Carnica bees.

Zusammenfassung

Mit der Verfügbarkeit eines komplett sequenzierten Genoms ergeben sich jetzt neue Einsichten sowohl für die Honigbiene selbst, als auch für Vergleiche mit anderen Arten. Obwohl einzelne Gene, Proteine und Enzyme des Metabolismus bereits seit einiger Zeit intensiv untersucht werden, stecken generelle Proteomanalysen, z.B. zum Proteom der Hypopharynxdrüsen, noch in den Anfängen. Ziel dieser Studie war eine systematische Untersuchung der Proteinzusammensetzung der Hypopharynxdrüse (HD) von Winterbienen. Der experimentelle Ansatz bestand in einer zweidimensionalen elektrophoretischen Auftrennung gefolgt von MALDI-TOF Analysen der einzelnen Proteinspots.

Aus der Gesamtzahl der Proteine, die in den HD von Winterbienen zu finden waren, identifizierten wir 26 Spots für die HD von Carnica-Arbeiterinnen (Abb. 1A; Tab. I) und 34 Spots für die HD einer chinesischen Zuchtlinie, die in hohen Mengen Gelée royale produziert (viel-Gelée-royal-Linie) (Abb. 1B; Tab. II). Die meisten dieser Proteine (20 für Carnica und 34 für die viel-Gelée-royal-Linie) waren Gelée royal Proteine (GRPs) und dies überwiegend Isoformen von GRP 3. Mit Bezug zum Kohlenhydratstoffwechsel fanden wir drei Proteine, zwei Glucoseoxidasen und eine alpha-Glucosidase. Drei Proteine wurden in dieser Studie zum ersten Mal für Honigbienen beschrieben. Zwei dieser Proteine, Peroxiredoxin und Thioredoxinperoxidase haben eine antioxidante Funktion. Das dritte Protein war ein Actin, die Isoform 1 von Act5C. Die Gesamtzahl der für die viel-Gelée-royal-Linie identifizierten Proteine lag deutlich über der für Carnica Winterbienen, vor allem was die GRPs angeht. Keine Unterschiede zwischen den beiden Linien fanden wir für drei der Kohlenhydratstoffwechselproteine und die drei neubeschriebenen Proteine (Abb. 2B). Diese vorläufigen Ergebnisse zum Proteom der Hypoharynxdrüse deuten darauf hin, dass diese Drüse bei Winterbienen eine Speicherfunktion haben könnte. Ausserdem konnten wir zeigen, dass die HD der viel-Gelée-royal-Linie mehr Proteine enthält als die der Carnica Arbeiterinnen. Da diese Studie nur einen Teil der Proteine des Gesamproteoms der HD identifizieren konnte, sind weitere Untersuchungen erforderlich.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Albert S., Klaudiny J., Simuth J. (1999) Molecular characterization of MRJP3, highly polymorphic protein of honeybee (Apis mellifera) royal jelly, Insect. Biochem. Mol. Biol. 29, 427–434.

    Article  PubMed  CAS  Google Scholar 

  • Albertova V., Su S.K., Brockmann A., Gadau J., Albert S. (2005) Organization and potential function of the mrjp3 locus in four honeybee species, J. Agric. Food Chem. 53, 8075–8081.

    Article  PubMed  CAS  Google Scholar 

  • Amdam G.V., Omholt S.T. (2002) The regulatory anatomy of honeybee lifespan, J. Theor. Biol. 216, 209–228. A. K.

    Article  PubMed  Google Scholar 

  • Arnold G., Delage-Darchen B. (1978) Nouvelles données sur l’équipement enzymatique des glandes salivaires de l’ouvrière d’Apis mellifica (Hyménoptère, Apidé), Ann. Sci. Nat. Zool. Biol. Anim. 12, 401–422.

    Google Scholar 

  • Bond B.J., Davidson N. (1986) The Drosophila melanogaster actin 5C gene uses two transcription initiation sites and three polyadenylation sites to express multiple mRNA species, Mol. Cell. Biol. 6, 2080–2088.

    PubMed  CAS  Google Scholar 

  • Bradford M.M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding, Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Choi H.J., Kang S.W., Yang C.H., Rhee S.G., Ryu S.E. (1998) Crystal structure of a novel human peroxidase enzyme at 2.0 Å, Nat. Struct. Biol. 5, 400–406.

    Article  PubMed  CAS  Google Scholar 

  • Costa R.A.C., Cruz-Landim C. (2000) Comparative study of the ultrastructure and secretory dynamic of hypopharyngeal glands in queens, workers and males of Scaptotrigona postica Latreille (Hymenoptera, Apidae, Meliponinae), Biocell 24, 39–48.

    PubMed  Google Scholar 

  • Costa R.A.C., Cruz-Landim C. (2005) Hydrolases in the hypopharyngeal glands of workers of Scaptotrigona postica and Apis mellifera (Hymenoptera, Apinae), Genet. Mol. Res. 4, 616–623.

    PubMed  CAS  Google Scholar 

  • Cruz-Landim C., Costa R.A.C. (1998) Structure and function of the hypopharyngeal glands of Hymenoptera: a comparative approach, J. Comp. Biol. 3, 151–163.

    Google Scholar 

  • Delaunay A., Pflieger D., Barrault M.B., Vinh J., Toledano M.B. (2002) A thiol peroxidase is an H2O2 receptor and redoxtransducer in gene activation, Cell 111, 471–81.

    Article  PubMed  CAS  Google Scholar 

  • Deseyn J., Billen J. (2005) Age-dependent morphology and ultrastructure of the hypopharyngeal gland of Apis mellifera workers (Hymenoptera, Apidae), Apidologie 36, 49–57.

    Article  Google Scholar 

  • Fisher A.B., Dodia C., Manevich Y., Chen J.W., Feinstein S.I. (1999) Phospholipid hydroperoxides are substrates for non-selenium glutathione peroxidase, J. Biol. Chem. 274, 21326–21334.

    Article  PubMed  CAS  Google Scholar 

  • Hanes J., Simuth J. (1992) Identification and partial characterization of the major royal jelly protein of the honey bee (Apis mellifera L.), J. Apic. Res. 31, 22–26.

    CAS  Google Scholar 

  • Hofmann B., Hecht H.J., Flohe L. (2002) Peroxiredoxins, Biol. Chem. 383, 347–364.

    Article  PubMed  CAS  Google Scholar 

  • Hrassnigg N., Crailsheim K. (1998) Adaptation of hypopharyngeal gland development to the brood status of honeybee (Apis mellifera L.) colonies, J. Insect Physiol. 44, 929–939.

    Article  PubMed  CAS  Google Scholar 

  • Huang Z.Y., Otis G.M., Teal P.E.A. (1989) Nature of brood signal activating the protein synthesis of hypopharyngeal gland in honey bees, Apis mellifera (Apidae: Hymenoptera), Apidologie 20, 455–464.

    Article  CAS  Google Scholar 

  • Huang Z.Y., Robinson G.E. (1996) Regulation of honey bee division of labor by colony age demography, Behav. Ecol. Sociobiol. 39, 147–158.

    Article  Google Scholar 

  • Kim T.S., Dodia C., Chen X., Hennigan B.B., Jain M., Feinstein S.I., Fisher A.B. (1998) Cloning and expression of rat lung acidic Ca2+-independent PLA2 and its organ distribution, Am. J. Physiol. Lung Cell Mol. Physiol. 274, L750-L761.

    CAS  Google Scholar 

  • Kubo T., Sasaki M., Namura J., Sasagawa H., Ohashi K., Takeuchi H., Natori S. (1996) Change in the expression of hypopharingeal-gland proteins of the worker honeybees (Apis mellifera L.) with the age and/or role, J. Biochem. 119, 291–295.

    PubMed  CAS  Google Scholar 

  • Li J.K., Wang T., Peng W.J. (2007) Comparative analysis of the effects of different storage conditions on major royal jelly proteins, J. Apic. Res. 46, 73–81.

    Article  CAS  Google Scholar 

  • Ohashi K., Sawata M., Takeuchi H., Natori S., Kubo T. (1996) Molecular cloning of cDNA and analysis of expression of the gene for a-glucosidase from the hypopharyngeal gland of the honeybee Apis mellifera L., Biochem. Biophys. Res. Commun. 221, 380–385.

    Article  PubMed  CAS  Google Scholar 

  • Ohashi K., Natori S., Kubo T. (1997) Change in the mode of gene expression of the hypopharyngeal gland cells with an age-dependent role change of the worker honeybee Apis mellifera L., Eur. J. Biochem. 249, 797–802.

    Article  PubMed  CAS  Google Scholar 

  • Ohashi K., Natori S., Kubo T. (1999) Expression of amylase and glucose oxidase in the hypopharyngeal gland with an age-dependent role change of the worker honeybee (Apis mellifera L.), Eur. J. Biochem. 265, 127–133.

    Article  PubMed  CAS  Google Scholar 

  • Ohashi K., Sasaki M., Sasagawa H., Nakamura J., Natori S., Kubo T. (2000) Functional flexibility of the honey bee hypopharyngeal gland in a dequeened colony, Zool. Sci. 17, 1089–1094.

    Article  PubMed  CAS  Google Scholar 

  • Otis G.W., Wheeler D.E., Buck N., Mattila H.R. (2004) Storage proteins in winter honey bees, Apiacata 38, 352–357.

    Google Scholar 

  • Painter T.S., Biesele J.J. (1966) The fine structure of the hypopharyngeal gland cell of the honey bee during development and secretion, Zoology 55, 1414–1419.

    CAS  Google Scholar 

  • Sano O., Kunikata T., Kohno K., Iwaki K., Ikeda M., Kurimoto M. (2004) Characterizaton of royal jelly proteins in both Africanized and European honeybees (Apis mellifera) by two-dimensional gel electrophoresis, J. Agric. Food Chem. 52, 15–20.

    Article  PubMed  CAS  Google Scholar 

  • Santos K.S., Santos L.D., Mendes M.A., Souza B.M., Malaspina O., Palma M.S. (2005) Profiling the proteome complement of the secretion from hypopharyngeal gland of Africanized nursehoneybees (Apis mellifera L.), Insect Biochem. Mol. Biol. 35, 85–91.

    Article  PubMed  CAS  Google Scholar 

  • Sasagawa H., Sasaki M., Okada I. (1989) Hormonal control of the division of labor in adult honeybees (Apis mellifera L.). I. Effect of methoprene on corpora allata and hypopharyngeal gland, and its α-glucosidase activity, Appl. Entomol. Zool. 24, 66–77.

    CAS  Google Scholar 

  • Scarselli R., Donadio E., Giuffrida M.G., Fortunato D., Conti A., Balestreri E., Felicioli R., Pinzauti M., Sabatini A.G., Felicioli A. (2005) Towards royal jelly proteome, Proteomics 5, 769–776.

    Article  PubMed  CAS  Google Scholar 

  • Sheterline P., Clayton J., Sparrow J.C. (1999) Protein Profile: Actin, Oxford University Press, Oxford, UK.

    Google Scholar 

  • Silva de Moraes R.L., Bowen I.D. (2000) Modes of cell death in the hypopharyngeal gland of honey bee (Apis mellifera L), Cell Biol. Int. 24, 737–743.

    Article  PubMed  CAS  Google Scholar 

  • Simuth J. (2001) Some properties of the main protein of honey bee (Apis mellifera) royal jelly, Apidologie 32, 69–80.

    Article  CAS  Google Scholar 

  • Simuth J., Bilikova K., Kovacova E., Kuzmoya Z., Schroder W. (2004) Immunochemical approach to detection of adulteration in honey: physiologically active royal jelly protein stimulating TNF-alpha release is a regular component of honey, J. Agric. Food Chem. 52, 2154–2158.

    Article  PubMed  CAS  Google Scholar 

  • Singh A.K., Shichi H. (1998) A novel glutathione peroxidase in bovine eye: sequence analysis, mRNA level, and translation, J. Biol. Chem. 273, 26171–26178.

    Article  PubMed  CAS  Google Scholar 

  • Takenaka T., Ito H., Yatsumami K., Echigo T. (1990) Changes of glucose oxidase activity and amount of gluconic acid formation in the hypopharyngeal glands during lifespan of honey bee workers (Apis mellifera L.), Agric. Biol. Chem. 54, 2133–2134.

    Google Scholar 

  • The Honeybee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee, Apis mellifera, Nature 443, 931–949.

    Article  Google Scholar 

  • Tobin S.L., Cook P.J., Burn T.C. (1990) Transcripts of individual Drosophila actin genes are differentially distributed during embryogenesis, Dev. Genet. 11, 15–26.

    Article  PubMed  CAS  Google Scholar 

  • Wagner C.R., Mahonald A.P., Miller K.G. (2002) One of the two cytoplasmic actin isoforms in Drosophila is essential, Proc. Natl. Acad. Sci. USA 99, 8037–8042.

    Article  PubMed  CAS  Google Scholar 

  • Wood Z.A., Schroder E., Robin Harris J., Poole L.B. (2003) Structure, mechanism and regulation of peroxiredoxins, Trends Biochem. Sci. 28, 32–40.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinghong Pan.

Additional information

Manuscript editor: Klaus Hartfelder

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Feng, M., Zhang, Z. et al. Identification of the proteome complement of hypopharyngeal glands from two strains of honeybees (Apis mellifera). Apidologie 39, 199–214 (2008). https://doi.org/10.1051/apido:2007059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/apido:2007059

Navigation