Semin Thromb Hemost 2010; 36(3): 321-331
DOI: 10.1055/s-0030-1253454
© Thieme Medical Publishers

Heterogeneity of the Tumor Vasculature

Janice A. Nagy1 , Sung-Hee Chang1 , 2 , Shou-Ching Shih1 , Ann M. Dvorak1 , Harold F. Dvorak1
  • 1Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and the Departments of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
  • 2Department of Pathology and Laboratory Medicine, Weil Cornell Medical School, New York, New York
Further Information

Publication History

Publication Date:
20 May 2010 (online)

ABSTRACT

The blood vessels supplying tumors are strikingly heterogeneous and differ from their normal counterparts with respect to organization, structure, and function. Six distinctly different tumor vessel types have been identified, and much has been learned about the steps and mechanisms by which they form. Four of the six vessel types (mother vessels, capillaries, glomeruloid microvascular proliferations, and vascular malformations) develop from preexisting normal venules and capillaries by angiogenesis. The two remaining vessel types (feeder arteries and draining veins) develop from arterio-venogenesis, a parallel, poorly understood process that involves the remodeling of preexisting arteries and veins. All six of these tumor vessel types can be induced to form sequentially in normal mouse tissues by an adenoviral vector expressing vascular endothelial growth factor. Current antiangiogenic cancer therapies directed at VEGF-A or its receptors have been of only limited benefit to cancer patients, perhaps because they target only the endothelial cells of the tumor blood vessel subset that requires exogenous VEGF-A for maintenance. A goal of future work is to identify therapeutic targets on tumor blood vessel endothelial cells that have lost this requirement.

REFERENCES

  • 1 Holash J, Maisonpierre P C, Compton D et al.. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF.  Science. 1999;  284(5422) 1994-1998
  • 2 Leenders W P, Küsters B, de Waal R M. Vessel co-option: how tumors obtain blood supply in the absence of sprouting angiogenesis.  Endothelium. 2002;  9(2) 83-87
  • 3 Du R, Lu K V, Petritsch C et al.. HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion.  Cancer Cell. 2008;  13(3) 206-220
  • 4 Folkman J. Tumor angiogenesis: therapeutic implications.  N Engl J Med. 1971;  285(21) 1182-1186
  • 5 Warren B. The vascular morphology of tumors. In: Peterson H-I Tumor Blood Circulation: Angiogenesis, Vascular Morphology and Blood Flow of Experimental and Human Tumors. Boca Raton, FL; CRC Press 1979: 1-47
  • 6 Stubbs M, McSheehy P M, Griffiths J R, Bashford C L. Causes and consequences of tumour acidity and implications for treatment.  Mol Med Today. 2000;  6(1) 15-19
  • 7 Semenza G L. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology.  Trends Mol Med. 2001;  7(8) 345-350
  • 8 Nagy J A, Feng D, Vasile E et al.. Permeability properties of tumor surrogate blood vessels induced by VEGF-A.  Lab Invest. 2006;  86(8) 767-780
  • 9 Dvorak H. Tumor blood vessels. In: Aird W The Endothelium: A Comprehensive Reference. Cambridge, United Kingdom; Cambridge University Press 2007
  • 10 Dvorak H F. Rous-Whipple Award Lecture. How tumors make bad blood vessels and stroma.  Am J Pathol. 2003;  162(6) 1747-1757
  • 11 Dvorak H F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing.  N Engl J Med. 1986;  315(26) 1650-1659
  • 12 Chang H Y, Sneddon J B, Alizadeh A A et al.. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds.  PLoS Biol. 2004;  2(2) E7
  • 13 Brown L F, Berse B, Jackman R W et al.. Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer.  Hum Pathol. 1995;  26(1) 86-91
  • 14 Guidi A J, Abu-Jawdeh G, Berse B et al.. Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in cervical neoplasia.  J Natl Cancer Inst. 1995;  87(16) 1237-1245
  • 15 Ellis L M, Rosen L, Gordon M S. Overview of anti-VEGF therapy and angiogenesis. Part 1: Angiogenesis inhibition in solid tumor malignancies.  Clin Adv Hematol Oncol. 2006;  4(suppl) 1-12
  • 16 Hurwitz H, Fehrenbacher L, Novotny W et al.. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer.  N Engl J Med. 2004;  350(23) 2335-2342
  • 17 Jain R K, Duda D G, Clark J W, Loeffler J S. Lessons from phase III clinical trials on anti-VEGF therapy for cancer.  Nat Clin Pract Oncol. 2006;  3(1) 24-40
  • 18 Pettersson A, Nagy J A, Brown L F et al.. Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor.  Lab Invest. 2000;  80(1) 99-115
  • 19 Nagy J A, Dvorak H F, Dvorak A M. VEGF-A and the induction of pathological angiogenesis.  Annu Rev Pathol. 2007;  2 251-275
  • 20 Sundberg C, Nagy J A, Brown L F et al.. Glomeruloid microvascular proliferation follows adenoviral vascular permeability factor/vascular endothelial growth factor-164 gene delivery.  Am J Pathol. 2001;  158(3) 1145-1160
  • 21 Nagy J A, Vasile E, Feng D et al.. Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis.  J Exp Med. 2002;  196(11) 1497-1506
  • 22 Nagy J A, Vasile E, Feng D et al.. VEGF-A induces angiogenesis, arteriogenesis, lymphangiogenesis, and vascular malformations.  Cold Spring Harb Symp Quant Biol. 2002;  67 227-237
  • 23 Dadras S S, Detmar M. Angiogenesis and lymphangiogenesis of skin cancers.  Hematol Oncol Clin North Am. 2004;  18(5) 1059-1070, viii
  • 24 He Y, Karpanen T, Alitalo K. Role of lymphangiogenic factors in tumor metastasis.  Biochim Biophys Acta. 2004;  1654(1) 3-12
  • 25 Jain R K. Angiogenesis and lymphangiogenesis in tumors: insights from intravital microscopy.  Cold Spring Harb Symp Quant Biol. 2002;  67 239-248
  • 26 Wirzenius M, Tammela T, Uutela M et al.. Distinct vascular endothelial growth factor signals for lymphatic vessel enlargement and sprouting.  J Exp Med. 2007;  204(6) 1431-1440
  • 27 Nagy J A, Chang S H, Dvorak A M, Dvorak H F. Why are tumour blood vessels abnormal and why is it important to know?.  Br J Cancer. 2009;  100(6) 865-869
  • 28 Paku S, Paweletz N. First steps of tumor-related angiogenesis.  Lab Invest. 1991;  65(3) 334-346
  • 29 Brown L F, Yeo K T, Berse B et al.. Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing.  J Exp Med. 1992;  176(5) 1375-1379
  • 30 Ren G, Michael L H, Entman M L, Frangogiannis N G. Morphological characteristics of the microvasculature in healing myocardial infarcts.  J Histochem Cytochem. 2002;  50(1) 71-79
  • 31 Secomb T W, Konerding M A, West C A, Su M, Young A J, Mentzer S J. Microangiectasias: structural regulators of lymphocyte transmigration.  Proc Natl Acad Sci U S A. 2003;  100(12) 7231-7234
  • 32 Denekamp J, Hobson B. Endothelial-cell proliferation in experimental tumours.  Br J Cancer. 1982;  46(5) 711-720
  • 33 Swayne G T, Smaje L H, Bergel D H. Distensibility of single capillaries and venules in the rat and frog mesentery.  Int J Microcirc Clin Exp. 1989;  8(1) 25-42
  • 34 Chang S H, Kanasaki K, Gocheva V et al.. VEGF-A induces angiogenesis by perturbing the cathepsin-cysteine protease inhibitor balance in venules, causing basement membrane degradation and mother vessel formation.  Cancer Res. 2009;  69(10) 4537-4544
  • 35 Cox J L. Cystatins and cancer.  Front Biosci. 2009;  14 463-474
  • 36 Dvorak A M, Kohn S, Morgan E S, Fox P, Nagy J A, Dvorak H F. The vesiculo-vacuolar organelle (VVO): a distinct endothelial cell structure that provides a transcellular pathway for macromolecular extravasation.  J Leukoc Biol. 1996;  59(1) 100-115
  • 37 Feng D, Nagy J A, Hipp J, Dvorak H F, Dvorak A M. Vesiculo-vacuolar organelles and the regulation of venule permeability to macromolecules by vascular permeability factor, histamine, and serotonin.  J Exp Med. 1996;  183(5) 1981-1986
  • 38 Feng D, Nagy J A, Hipp J, Pyne K, Dvorak H F, Dvorak A M. Reinterpretation of endothelial cell gaps induced by vasoactive mediators in guinea-pig, mouse and rat: many are transcellular pores.  J Physiol. 1997;  504(Pt 3) 747-761
  • 39 Feng D, Nagy J A, Dvorak A M, Dvorak H F. Different pathways of macromolecule extravasation from hyperpermeable tumor vessels.  Microvasc Res. 2000;  59(1) 24-37
  • 40 Nagy J A, Morgan E S, Herzberg K T, Manseau E J, Dvorak A M, Dvorak H F. Pathogenesis of ascites tumor growth: angiogenesis, vascular remodeling, and stroma formation in the peritoneal lining.  Cancer Res. 1995;  55(2) 376-385
  • 41 Egginton S, Zhou A L, Brown M D, Hudlická O. Unorthodox angiogenesis in skeletal muscle.  Cardiovasc Res. 2001;  49(3) 634-646
  • 42 Goffin J R, Straume O, Chappuis P O et al.. Glomeruloid microvascular proliferation is associated with p53 expression, germline BRCA1 mutations and an adverse outcome following breast cancer.  Br J Cancer. 2003;  89(6) 1031-1034
  • 43 Straume O, Chappuis P O, Salvesen H B et al.. Prognostic importance of glomeruloid microvascular proliferation indicates an aggressive angiogenic phenotype in human cancers.  Cancer Res. 2002;  62(23) 6808-6811
  • 44 McKee P. Pathology of the Skin with Clinical Correlations. London, United Kingdom; Mosby International 1996
  • 45 Nagy J A, Dvorak A M, Dvorak H F. VEGF-A(164/165) and PlGF: roles in angiogenesis and arteriogenesis.  Trends Cardiovasc Med. 2003;  13(5) 169-175
  • 46 Fu Y, Nagy J, Dvorak A, Dvorak H. Tumor blood vessels: structure and function. In: Teicher B, Ellis L Cancer Drug Discovery and Development. Antiangiogenic Agents in Cancer Therapy. Totowa, NJ; Humana Press 2007: 205-224
  • 47 Baker J L. Retinal capillary hemangioma.  J Am Optom Assoc. 1991;  62(10) 776-779
  • 48 Farah M E, Uno F, Höfling-Lima A L, Morales P H, Costa R A, Cardillo J A. Transretinal feeder vessel ligature in von Hippel-Lindau disease.  Eur J Ophthalmol. 2001;  11(4) 386-388
  • 49 Goel A, Muzumdar D, Desai K, Chagla A. Retroorbital hemangiopericytoma and cavernous sinus schwannoma—case report.  Neurol Med Chir (Tokyo). 2003;  43(1) 47-50
  • 50 Folberg R, Hendrix M J, Maniotis A J. Vasculogenic mimicry and tumor angiogenesis.  Am J Pathol. 2000;  156(2) 361-381
  • 51 Hess A R, Seftor E A, Gruman L M, Kinch M S, Seftor R E, Hendrix M J. VE-cadherin regulates EphA2 in aggressive melanoma cells through a novel signaling pathway: implications for vasculogenic mimicry.  Cancer Biol Ther. 2006;  5(2) 228-233
  • 52 Lin A Y, Ai Z, Lee S C et al.. Comparing vasculogenic mimicry with endothelial cell-lined vessels: techniques for 3D reconstruction and quantitative analysis of tissue components from archival paraffin blocks.  Appl Immunohistochem Mol Morphol. 2007;  15(1) 113-119
  • 53 McDonald D M, Munn L, Jain R K. Vasculogenic mimicry: how convincing, how novel, and how significant?.  Am J Pathol. 2000;  156(2) 383-388
  • 54 Ferrara N. Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications.  Semin Oncol. 2002;  29(6, suppl 16) 10-14
  • 55 Kim K J, Li B, Winer J et al.. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo.  Nature. 1993;  362(6423) 841-844
  • 56 Jain R K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy.  Science. 2005;  307(5706) 58-62
  • 57 Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors.  J Clin Invest. 2003;  111(9) 1287-1295
  • 58 Xue Q, Nagy J A, Manseau E J, Phung T L, Dvorak H F, Benjamin L E. Rapamycin inhibition of the Akt/mTOR pathway blocks select stages of VEGF-A164-driven angiogenesis, in part by blocking S6Kinase.  Arterioscler Thromb Vasc Biol. 2009;  29(8) 1172-1178
  • 59 Seaman S, Stevens J, Yang M Y, Logsdon D, Graff-Cherry C, St Croix B. Genes that distinguish physiological and pathological angiogenesis.  Cancer Cell. 2007;  11(6) 539-554
  • 60 Shih S C, Zukauskas A, Li D et al.. The L6 protein TM4SF1 is critical for endothelial cell function and tumor angiogenesis.  Cancer Res. 2009;  69(8) 3272-3277

Harold F DvorakM.D. 

Department of Pathology, Beth Israel Deaconess Medical Center

330 Brookline Avenue, RN227c, Boston, MA 02215

Email: hdvorak@bidmc.harvard.edu

    >