Semin Thromb Hemost 2010; 36(8): 881-887
DOI: 10.1055/s-0030-1267042
© Thieme Medical Publishers

Platelet- and Megakaryocyte-Derived Microparticles

Robert Flaumenhaft1 , Albert T.A. Mairuhu1 , Joseph E. Italiano2 , 3
  • 1Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
  • 2Division of Translational Medicine, Brigham and Women's Hospital, Boston, Massachusetts
  • 3Vascular Biology Program, Department of Surgery, Children's Hospital Boston, Boston, Massachusetts
Further Information

Publication History

Publication Date:
03 November 2010 (online)

ABSTRACT

Platelet microparticles are the most abundant cell-derived microparticle subtype in the circulation. Yet the mechanism by which platelet microparticles are formed is poorly defined. This review highlights the concept of the generation of microparticles from platelets and their precursor cells, megakaryocytes. Special emphasis is placed on the mechanisms of microparticle formation and novel functions for microparticles in normal physiology and disease states.

REFERENCES

  • 1 Wolf P. The nature and significance of platelet products in human plasma.  Br J Haematol. 1967;  13(3) 269-288
  • 2 George J N, Thoi L L, McManus L M, Reimann T A. Isolation of human platelet membrane microparticles from plasma and serum.  Blood. 1982;  60(4) 834-840
  • 3 George J N, Pickett E B, Saucerman S et al. Platelet surface glycoproteins. Studies on resting and activated platelets and platelet membrane microparticles in normal subjects, and observations in patients during adult respiratory distress syndrome and cardiac surgery.  J Clin Invest. 1986;  78(2) 340-348
  • 4 Horstman L L, Ahn Y S. Platelet microparticles: a wide-angle perspective.  Crit Rev Oncol Hematol. 1999;  30(2) 111-142
  • 5 Joop K, Berckmans R J, Nieuwland R et al. Microparticles from patients with multiple organ dysfunction syndrome and sepsis support coagulation through multiple mechanisms.  Thromb Haemost. 2001;  85(5) 810-820
  • 6 Berckmans R J, Neiuwland R, Böing A N, Romijn F P, Hack C E, Sturk A. Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation.  Thromb Haemost. 2001;  85(4) 639-646
  • 7 Heijnen H F, Schiel A E, Fijnheer R, Geuze H J, Sixma J J. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules.  Blood. 1999;  94(11) 3791-3799
  • 8 Flaumenhaft R. Formation and fate of platelet microparticles.  Blood Cells Mol Dis. 2006;  36(2) 182-187
  • 9 Rand M L, Wang H, Bang K W, Packham M A, Freedman J. Rapid clearance of procoagulant platelet-derived microparticles from the circulation of rabbits.  J Thromb Haemost. 2006;  4(7) 1621-1623
  • 10 Bode A P, Orton S M, Frye M J, Udis B J. Vesiculation of platelets during in vitro aging.  Blood. 1991;  77(4) 887-895
  • 11 Miyazaki Y, Nomura S, Miyake T et al. High shear stress can initiate both platelet aggregation and shedding of procoagulant containing microparticles.  Blood. 1996;  88(9) 3456-3464
  • 12 Chow T W, Hellums J D, Thiagarajan P. Thrombin receptor activating peptide (SFLLRN) potentiates shear-induced platelet microvesiculation.  J Lab Clin Med. 2000;  135(1) 66-72
  • 13 Wiedmer T, Shattil S J, Cunningham M, Sims P J. Role of calcium and calpain in complement-induced vesiculation of the platelet plasma membrane and in the exposure of the platelet factor Va receptor.  Biochemistry. 1990;  29(3) 623-632
  • 14 Shcherbina A, Remold-O'Donnell E. Role of caspase in a subset of human platelet activation responses.  Blood. 1999;  93(12) 4222-4231
  • 15 Dale G L, Friese P. Bax activators potentiate coated-platelet formation.  J Thromb Haemost. 2006;  4(12) 2664-2669
  • 16 Bevers E M, Comfurius P, Zwaal R F. Changes in membrane phospholipid distribution during platelet activation.  Biochim Biophys Acta. 1983;  736(1) 57-66
  • 17 Zwaal R F, Comfurius P, Bevers E M. Surface exposure of phosphatidylserine in pathological cells.  Cell Mol Life Sci. 2005;  62(9) 971-988
  • 18 Zwaal R F, Comfurius P, Bevers E M. Scott syndrome, a bleeding disorder caused by defective scrambling of membrane phospholipids.  Biochim Biophys Acta. 2004;  1636(2-3) 119-128
  • 19 Zhou Q, Zhao J, Wiedmer T, Sims P J. Normal hemostasis but defective hematopoietic response to growth factors in mice deficient in phospholipid scramblase 1.  Blood. 2002;  99(11) 4030-4038
  • 20 Wiedmer T, Zhao J, Li L et al. Adiposity, dyslipidemia, and insulin resistance in mice with targeted deletion of phospholipid scramblase 3 (PLSCR3).  Proc Natl Acad Sci U S A. 2004;  101(36) 13296-13301
  • 21 Manno S, Takakuwa Y, Mohandas N. Identification of a functional role for lipid asymmetry in biological membranes: phosphatidylserine-skeletal protein interactions modulate membrane stability.  Proc Natl Acad Sci U S A. 2002;  99(4) 1943-1948
  • 22 MacDonald R I. Temperature and ionic effects on the interaction of erythroid spectrin with phosphatidylserine membranes.  Biochemistry. 1993;  32(27) 6957-6964
  • 23 O'Toole P J, Morrison I E, Cherry R J. Investigations of spectrin-lipid interactions using fluoresceinphosphatidylethanolamine as a membrane probe.  Biochim Biophys Acta. 2000;  1466(1–2) 39-46
  • 24 Niggli V, Kaufmann S, Goldmann W H, Weber T, Isenberg G. Identification of functional domains in the cytoskeletal protein talin.  Eur J Biochem. 1994;  224(3) 951-957
  • 25 Razmara M, Hu H, Masquelier M, Li N. Glycoprotein IIb/IIIa blockade inhibits platelet aminophospholipid exposure by potentiating translocase and attenuating scramblase activity.  Cell Mol Life Sci. 2007;  64(7–8) 999-1008
  • 26 Niebuhr K, Giuriato S, Pedron T et al. Conversion of PtdIns(4,5)P(2) into PtdIns(5)P by the S. flexneri effector IpgD reorganizes host cell morphology.  EMBO J. 2002;  21(19) 5069-5078
  • 27 Raucher D, Stauffer T, Chen W et al. Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion.  Cell. 2000;  100(2) 221-228
  • 28 O'Connell D J, Rozenvayn N, Flaumenhaft R. Phosphatidylinositol 4,5-bisphosphate regulates activation-induced platelet microparticle formation.  Biochemistry. 2005;  44(16) 6361-6370
  • 29 Wang Y, Litvinov R I, Chen X et al. Loss of PIP5KIgamma, unlike other PIP5KI isoforms, impairs the integrity of the membrane cytoskeleton in murine megakaryocytes.  J Clin Invest. 2008;  118(2) 812-819
  • 30 Hyvönen M, Macias M J, Nilges M, Oschkinat H, Saraste M, Wilmanns M. Structure of the binding site for inositol phosphates in a PH domain.  EMBO J. 1995;  14(19) 4676-4685
  • 31 Fukami K, Furuhashi K, Inagaki M, Endo T, Hatano S, Takenawa T. Requirement of phosphatidylinositol 4,5-bisphosphate for alpha-actinin function.  Nature. 1992;  359(6391) 150-152
  • 32 Tsukita S, Yonemura S. Cortical actin organization: lessons from ERM (ezrin/radixin/moesin) proteins.  J Biol Chem. 1999;  274(49) 34507-34510
  • 33 Glantz S B, Cianci C D, Iyer R, Pradhan D, Wang K K, Morrow J S. Sequential degradation of alphaII and betaII spectrin by calpain in glutamate or maitotoxin-stimulated cells.  Biochemistry. 2007;  46(2) 502-513
  • 34 Fox J E, Austin C D, Boyles J K, Steffen P K. Role of the membrane skeleton in preventing the shedding of procoagulant-rich microvesicles from the platelet plasma membrane.  J Cell Biol. 1990;  111(2) 483-493
  • 35 Fox J E, Austin C D, Reynolds C C, Steffen P K. Evidence that agonist-induced activation of calpain causes the shedding of procoagulant-containing microvesicles from the membrane of aggregating platelets.  J Biol Chem. 1991;  266(20) 13289-13295
  • 36 Leitinger B, McDowall A, Stanley P, Hogg N. The regulation of integrin function by Ca(2+).  Biochim Biophys Acta. 2000;  1498(2–3) 91-98
  • 37 Bassé F, Gaffet P, Bienvenüe A. Correlation between inhibition of cytoskeleton proteolysis and anti-vesiculation effect of calpeptin during A23187-induced activation of human platelets: are vesicles shed by filopod fragmentation?.  Biochim Biophys Acta. 1994;  1190(2) 217-224
  • 38 Cauwenberghs S, Feijge M A, Harper A G, Sage S O, Curvers J, Heemskerk J W. Shedding of procoagulant microparticles from unstimulated platelets by integrin-mediated destabilization of actin cytoskeleton.  FEBS Lett. 2006;  580(22) 5313-5320
  • 39 Schoenwaelder S M, Yuan Y, Josefsson E C et al. Two distinct pathways regulate platelet phosphatidylserine exposure and procoagulant function.  Blood. 2009;  114(3) 663-666
  • 40 Cohen Z, Davis-Gorman G, McDonagh P F, Ritter L. Caspase inhibition of platelet activation.  Blood Coagul Fibrinolysis. 2008;  19(4) 305-309
  • 41 Mason K D, Carpinelli M R, Fletcher J I et al. Programmed anuclear cell death delimits platelet life span.  Cell. 2007;  128(6) 1173-1186
  • 42 Dasgupta S K, Abdel-Monem H, Niravath P et al. Lactadherin and clearance of platelet-derived microvesicles.  Blood. 2009;  113(6) 1332-1339
  • 43 Cramer E M, Norol F, Guichard J et al. Ultrastructure of platelet formation by human megakaryocytes cultured with the Mpl ligand.  Blood. 1997;  89(7) 2336-2346
  • 44 Rozmyslowicz T, Majka M, Kijowski J et al. Platelet- and megakaryocyte-derived microparticles transfer CXCR4 receptor to CXCR4-null cells and make them susceptible to infection by X4-HIV.  AIDS. 2003;  17(1) 33-42
  • 45 Flaumenhaft R, Dilks J R, Richardson J et al. Megakaryocyte-derived microparticles: direct visualization and distinction from platelet-derived microparticles.  Blood. 2009;  113(5) 1112-1121
  • 46 van der Zee P M, Biró E, Kó Y et al. P-selectin- and CD63-exposing platelet microparticles reflect platelet activation in peripheral arterial disease and myocardial infarction.  Clin Chem. 2006;  52(4) 657-664
  • 47 Cunningham C C. Actin polymerization and intracellular solvent flow in cell surface blebbing.  J Cell Biol. 1995;  129(6) 1589-1599
  • 48 Charras G T, Hu C K, Coughlin M, Mitchison T J. Reassembly of contractile actin cortex in cell blebs.  J Cell Biol. 2006;  175(3) 477-490
  • 49 Fackler O T, Grosse R. Cell motility through plasma membrane blebbing.  J Cell Biol. 2008;  181(6) 879-884
  • 50 Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak M Z. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication.  Leukemia. 2006;  20(9) 1487-1495
  • 51 Baj-Krzyworzeka M, Majka M, Pratico D et al. Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells.  Exp Hematol. 2002;  30(5) 450-459
  • 52 Morel O, Toti F, Hugel B, Freyssinet J M. Cellular microparticles: a disseminated storage pool of bioactive vascular effectors.  Curr Opin Hematol. 2004;  11(3) 156-164
  • 53 Mack M, Kleinschmidt A, Brühl H et al. Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection.  Nat Med. 2000;  6(7) 769-775
  • 54 Janowska-Wieczorek A, Majka M, Kijowski J et al. Platelet-derived microparticles bind to hematopoietic stem/progenitor cells and enhance their engraftment.  Blood. 2001;  98(10) 3143-3149
  • 55 Barry O P, Pratico D, Lawson J A, FitzGerald G A. Transcellular activation of platelets and endothelial cells by bioactive lipids in platelet microparticles.  J Clin Invest. 1997;  99(9) 2118-2127
  • 56 Barry O P, Praticò D, Savani R C, FitzGerald G A. Modulation of monocyte-endothelial cell interactions by platelet microparticles.  J Clin Invest. 1998;  102(1) 136-144
  • 57 Raposo G, Nijman H W, Stoorvogel W et al. B lymphocytes secrete antigen-presenting vesicles.  J Exp Med. 1996;  183(3) 1161-1172
  • 58 Denzer K, van Eijk M, Kleijmeer M J, Jakobson E, de Groot C, Geuze H J. Follicular dendritic cells carry MHC class II-expressing microvesicles at their surface.  J Immunol. 2000;  165(3) 1259-1265
  • 59 Clayton A, Turkes A, Dewitt S, Steadman R, Mason M D, Hallett M B. Adhesion and signaling by B cell-derived exosomes: the role of integrins.  FASEB J. 2004;  18(9) 977-979
  • 60 Ratajczak J, Miekus K, Kucia M et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery.  Leukemia. 2006;  20(5) 847-856
  • 61 Deregibus M C, Cantaluppi V, Calogero R et al. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA.  Blood. 2007;  110(7) 2440-2448
  • 62 Hunter M P, Ismail N, Zhang X et al. Detection of microRNA expression in human peripheral blood microvesicles.  PLoS One. 2008;  3(11) e3694

Robert FlaumenhaftM.D. Ph.D. 

Center for Life Sciences, Room no. 939

Beth Israel Deaconess Medical Center, 3 Blackfan Circle, Boston, MA 02215

Email: rflaumen@bidmc.harvard.edu

    >