Semin Reprod Med 2002; 20(1): 005-014
DOI: 10.1055/s-2002-23515
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

The History and Principles of Cryopreservation

D. E. Pegg
  • Medical Cryobiology Unit, Department of Biology, University of York, York, United Kingdom
Further Information

Publication History

Publication Date:
02 April 2002 (online)

ABSTRACT

The ability of glycerol to protect cells from freezing injury was discovered accidentally. The subsequent development of cryopreservation techniques has had a huge impact in many fields, most notably in reproductive medicine. Freezing injury has been shown to have two components, direct damage from the ice crystals and secondary damage caused by the increase in concentration of solutes as progressively more ice is formed. Intracellular freezing is generally lethal but can be avoided by sufficiently slow cooling, and under usual conditions solute damage dominates. However, extracellular ice plays a major role in tissues. Cryoprotectants act primarily by reducing the amount of ice that is formed at any given subzero temperature. If sufficient cryoprotectant could be introduced, freezing would be avoided altogether and a glassy or vitreous state could be produced, but osmotic and toxic damage caused by the high concentrations of cryoprotectant that are required then become critical problems. The transport of cryoprotectants into and out of cells and tissues is sufficiently well understood to make optimization by calculation a practical possibility but direct experiment remains crucial to the development of other aspects of the cryopreservation process.

REFERENCES

  • 1 Polge C, Smith A U, Parkes A S. Revival of spermatozoa after vitrification and dehydration at low temperatures.  Nature (Lond) . 1949;  164 666
  • 2 Parkes A S. Preservation of living cells and tissues at low temperatures. Proc III Internat Congress Animal Reproduction, Cambridge, 1956: 69
  • 3 Smith A U. Biological Effects of Freezing and Supercooling.  London: Edward Arnold; 1961
  • 4 Lovelock J E. The haemolysis of human red blood cells by freezing and thawing.  Biochim Biophys Acta (Amst) . 1953;  10 414-426
  • 5 Lovelock J E. The mechanism of the protective action of glycerol against haemolysis by freezing and thawing.  Biochim Biophys Acta (Amst) . 1953;  11 28-36
  • 6 Lovelock J E. The protective action by natural solutes against haemolysis by freezing and thawing.  Biochem J . 1954;  56 265-270
  • 7 Lovelock J E. Haemolysis by thermal shock.  Brit J Haemat . 1955;  1 17-29
  • 8 Pegg D E, Diaper M P. On the mechanism of injury to slowly frozen erythrocytes.  Biophys J . 1988;  54 471-488
  • 9 Mazur P, Rall W F, Rigopoulos N. The relative contributions of the fraction of unfrozen water and of salt concentration to the survival of slowly frozen human erythrocytes.  Biophys J . 1981;  36 653-675
  • 10 Mazur P, Rigopoulos N. Contributions of unfrozen fraction and of salt concentration to the survival of slowly frozen human erythrocytes: influence of warming rate.  Cryobiology . 1983;  20 274-289
  • 11 Mazur P, Cole K W. Influence of cell concentration on the contribution of unfrozen fraction and salt concentration to the survival of slowly frozen human erythrocytes.  Cryobiology . 1985;  22 505-536
  • 12 Mazur P, Cole K W. Roles of unfrozen fraction, salt concentration and changes in cell volume in the survival of frozen human erythrocytes.  Cryobiology . 1989;  26 1-29
  • 13 Pegg D E, Diaper M P. The ``unfrozen fraction'' hypothesis of freezing injury to human erythrocytes: a critical examination of the evidence.  Cryobiology . 1989;  26 30-43
  • 14 Pegg D E, Diaper M P. The effect of initial tonicity on freeze-thaw injury to human red cells suspended in solutions of sodium chloride.  Cryobiology . 1989;  26 579-560
  • 15 Mazur P. Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing.  J Gen Physiol . 1963;  47 347-369
  • 16 Leibo S P. Preservation of mammalian cells and embryos by freezing. In: Simatos D, Strong DM, Turk M, eds. Les Colloques de I'Institut National de la Sante et de la Recherche Medicale: 62 Cryoimmunologie. Paris: Inserm 1977: 311-334
  • 17 Pegg D E, Jacobsen I A. Current status of cryopreservation of whole organs with particular reference to the kidney. In: Marberger M, Dreikorn K, eds. Renal Preservation Baltimore: Williams and Wilkins 1983: 301-322
  • 18 Pegg D E. Ice crystals in tissues and organs. In: Pegg DE, Karow AM Jr, eds. The Biophysics of Organ Cryopreservation New York and London: Plenum Press 1987: 117-140
  • 19 Jacobsen I A, Pegg D E, Starklint H. Effect of cooling and warming rate on glycerolised rabbit kidneys.  Cryobiology . 1984;  21 637-653
  • 20 Rubinsky B, Pegg D E. A mathematical model for the freezing process in biological tissue.  Proc R Soc Lond B Biol Sci . 1988;  234 343-358
  • 21 Rall W F, Fahy G M. Ice-free cryopreservation of mouse embryos at -196°C by vitrification.  Nature (Lond) . 1985;  313 573-575
  • 22 Elford B C, Walter C A. Effects of electrolyte composition and pH on the structure and function of smooth muscle cooled to -79°C in unfrozen media.  Cryobiology . 1972;  9 82-100
  • 23 Jacobsen I A, Pegg D E, Wusteman M C, Robinson S M. Transplantation of rabbit kidneys perfused with glycerol solutions at 10°C.  Cryobiology . 1978;  15 18-26
  • 24 Taylor M J. Equilibrium approach to ice-free cryopreservation of corneas: tolerance of endothelium to high concentrations of dimethyl sulphoxide.  Cryobiology . 1988;  25 533
  • 25 Arnaud F G, Pegg D E. Cryopreservation of human platelets with propane-1,2diol.  Cryobiology . 1990;  27 130-137
  • 26 Jacobsen I A, Pegg D E, Starklint H, Hunt C J, Diaper M P. Introduction and removal of cryoprotectants with rabbit kidneys: assessment by transplantation.  Cryobiology . 1988;  25 285-299
  • 27 Rich S J, Armitage W J. Propane-1,2-diol as a potential component of a vitrification solution for corneas.  Cryobiology . 1990;  27 42-54
  • 28 Testart J. High pregnancy rate after early embryo freezing.  Fertil Steril . 1986;  46 268
  • 29 Newton H, Pegg D E, Barrass R, Gosden R G. Osmotically inactive volume, hydraulic conductivity and permeability to dimethyl sulphoxide of human mature oocytes.  J Reprod Fertil . 1999;  117 27-33
  • 30 Boutron P. Non-equilibrium formation of ice in aqueous solutions: efficacy of polyalcohol solutions for vitrification. In: Pegg DE, Karow AM Jr, eds. The Biophysics of Organ Cryopreservation New York and London: Plenum Press 1987: 201-236
  • 31 Sutton R L. Critical cooling rates to avoid ice crystallization in solutions of cryoprotective agents.  J Chem Soc Faraday Trans . 1991;  87 101-105
  • 32 Sutton R L. Critical cooling rates to avoid ice crystallization in aqueous cryoprotectant solutions containing polymers.  J Chem Soc Faraday Trans . 1991;  87 3747-3751
  • 33 Sutton R L. Critical cooling rates for aqueous cryoprotectants in the presence of sugars and polysaccharides.  Cryobiology . 1992;  29 585-598
  • 34 Marsland T P, Evans S, Pegg D E. Dielectric measurements for the design of an electromagnetic rewarming system.  Cryobiology . 1981;  24 311-323
  • 35 Robinson M P, Pegg D E. Rapid electromagnetic warming of cells and tissues.  IEEE Trans Biomed Eng . 1999;  46 1413-1425
  • 36 Fahy G N, MacFarlane D R, Angell C A, Meryman H T. Vitrification as an approach to cryopreservation.  Cryobiology . 1984;  21 407-426
  • 37 De Vries L A. Biological antifreeze agents.  Am Rev Physiol . 1983;  45 245
  • 38 Sutton R L, Pegg D E. Devitrification in butane-2,3-diol solutions containing anti-freeze peptide.  Cryo-Letters . 1993;  14 13-20
  • 39 Wowk B, Darwin M, Harris S B, Russell S R, Rasch C M. Effects of solute methoxylation on glass-forming ability and stability of vitrification solutions.  Cryobiology . 1999;  39 215-227
  • 40 Kleinhans F W. Membrane permeability modelling; Kedem-Katchalsky vs a two-parameter formalism.  Cryobiology . 1998;  37 271-289
  • 41 Pfaff R T, Agca Y, Liu J, Woods E J, Peter A T, Critser J K. Cryobiology of rat embryos 1: determination of zygote membrane permeability coefficients for water and cryoprotectants, their activation energies and the development of improved cryopreservation methods.  Biol Reprod . 2000;  63 1294-1302
  • 42 Bateson E AJ, Busza A L, Pegg D E, Taylor M J. Permeation of rabbit common carotid arteries with dimethyl sulphoxide.  Cryobiology . 1994;  31 393-397
  • 43 Newton H, Fisher J, Arnold J RP, Pegg D E, Faddy M J, Gosden R G. Permeation of human ovarian tissue with cryoprotective agents in preparation for cryopreservation.  Hum Reprod . 1998;  13 101-105
  • 44 Song Y C, Khirabadi B S, Lightfoot F G, Brockbank K GM, Taylor M J. Vitreous cryopreservation maintains the function of vascular grafts.  Nat Biotechnol . 2000;  18 296-299
    >