Semin Thromb Hemost 2003; 29(1): 061-068
DOI: 10.1055/s-2003-37940
Copyright © 2003 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Immunobiology of Inhibitor Development in Hemophilia A

Karin Fijnvandraat1 , Wendy S. Bril2 , Jan Voorberg2
  • 1Pediatrician, Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam
  • 2Department of Plasma Proteins, CLB, Amsterdam, The Netherlands
Further Information

Publication History

Publication Date:
17 March 2003 (online)

ABSTRACT

After treatment with factor (F) VIII concentrate a significant number of patients with hemophilia A develop inhibitory antibodies that neutralize FVIII. Epitope mapping revealed that antibodies bind to selected regions within the A2, A3, and C2 domains of FVIII. Anti-A2 and anti-A3 antibodies interfere with assembly of FVIIIa with FIXa, whereas anti-C2 antibodies impede the interaction of FVIII with phospholipids. The immunologic mechanisms underlying inhibitor development in hemophilia A have not been fully elucidated. FVIII is recognized by the immune system as a foreign antigenic substance that evokes the T cell-dependent formation of high-affinity antibodies. Clonal analysis of B cell responses in hemophilia A patients has given further insight into the epitope specificity and molecular characteristics of FVIII inhibitors. Costimulatory blockade of FVIII-reactive T cells in a mouse model for hemophilia A has suggested new approaches for treatment of inhibitor patients. In this article, recent studies on the immunobiology of FVIII inhibitors are summarized and discussed with reference to their potential impact on treatment and prevention of immune responses in patients with hemophilia.

REFERENCES

  • 1 Hoyer L W. Hemophilia.  N Engl J Med . 1994;  330 38-47
  • 2 Mannucci P M, Tuddenham E GD. The hemophilias-from royal genes to gene therapy.  N Engl J Med . 2001;  344 1773-1779
  • 3 Healey J F, Lubin I M, Nakai H. et al . Residues 484-508 contain a major determinant of the inhibitory epitope in the A2 domain of human factor VIII.  J Biol Chem . 1995;  270 14505-14509
  • 4 Healey J F, Barrow R T, Tamim H M. et al . Residues Glu2181-Val2243 contain a major determinant of the inhibitory epitope in the C2 domain of human factor VIII.  Blood . 1998;  92 3701-3709
  • 5 Fijnvandraat K, Celie P HN, Turenhout E AM. et al . A human allo-antibody interferes with binding of factor IXa to the factor VIII light chain.  Blood . 1998;  91 2347-2352
  • 6 Zhong D, Saenko E L, Shima M, Felch M, Scandella D. Some human inhibitor antibodies interfere with factor VIII binding to factor IX.  Blood . 1998;  92 136-142
  • 7 Fay P L, Scandella D. Human inhibitors specific for the factor VIII A2 domain disrupt the interaction between the subunit and factor IXa.  J Biol Chem . 1999;  274 29826-29830
  • 8 Arai M, Hoyer L W, Scandella D. Molecular basis of factor VIII inhibition by human antibodies-antibodies that bind to the factor VIII light chain prevent the interaction of factor VIII with phospholipids.  J Clin Invest . 1989;  83 1978-1984
  • 9 Lacroix-Desmazes S, Moreau A, Sooryanarayana. et al . Catalytic activity of antibodies against factor VIII in patients with hemophilia A.  Nat Med . 1999;  5 1044-1047
  • 10 Algiman M, Dietrich G, Nydegger U E. et al . Natural antibodies to factor VIII (antihemophilic factor) in healthy individuals.  Proc Natl Acad Sci USA . 1992;  89 3795-3799
  • 11 Gilles J G, Saint-Remy J M. Healthy subjects produce both anti-factor VIII and specific anti-factor VIII idiotypic antibodies.  J Clin Invest . 1994;  94 1496-1505
  • 12 Moreau A, Lacroix-Desmazes S, Stieltjes N. et al . Antibodies to the FVIII light chain that neutralize FVIII procoagulant activity are present in plasma of nonresponder patients with severe hemophilia A and in normal polyclonal human IgG.  Blood . 2000;  95 3435-3441
  • 13 Jacquemin M G, Desqueper B G, Benhida A. et al . Mechanism and kinetics of factor VIII inactivation: study with an IgG4 monoclonal antibody derived from a hemophilia A patient with an inhibitor.  Blood . 1998;  92 496-506
  • 14 Spiegel P C, Jacquemin M, Saint-Remy J MR, Stoddard B L, Pratt K. Structure of a factor VIII C2 domain-immunoglobulin G4κ Fab complex: identification of an inhibitory antibody on the surface of factor VIII.  Blood . 2001;  98 13-19
  • 15 Barrow R T, Healey J F, Jacquemin M, Saint-Remy J MR, Lollar P. Antigenicity of putative phospholipid membrane binding residues in factor VIII.  Blood . 2001;  97 169-174
  • 16 Jacquemin M, Benhida A, Peerlinck K. et al . A human antibody directed to the factor VIII C1 domain inhibits factor VIII cofactor activity and binding to von Willebrand factor.  Blood . 2000;  95 156-163
  • 17 Santagostino E, Gringeri A, Tagliavacca L. et al . Inhibitors to factor VIII in a family with mild hemophilia: molecular characterization and response to factor VIII and desmopressin.  Thromb Haemost . 1995;  74 619-621
  • 18 Peerlinck K, Jacquemin M, Arnout J. et al . Anti-factor VIII antibody inhibiting allogeneic but not autologous factor VIII in patients with mild hemophilia A.  Blood . 1999;  93 2267-2273
  • 19 Fijnvandraat K, Turenhout E AM, van den Brink N E. et al . The missense mutation Arg 593→Cys is related to antibody formation in a patient with mild hemophilia A.  Blood . 1997;  89 4371-4377
  • 20 van den Brink N E, Turenhout E AM, Davies J. et al . Human antibodies with specificity for the C2 domain of factor VIII are derived from VH1 germline genes.  Blood . 2000;  95 558-563
  • 21 van den Brink N E, Turenhout E AM, Bank C MC. et al . Molecular analysis of human anti-factor VIII antibodies by V gene phage display identifies a new epitope in the acidic region following the A2 domain.  Blood . 2000;  96 540-545
  • 22 van den Brink N E, Turenhout E AM, Bovenschen N. et al . Multiple VH genes are used to assemble human antibodies directed towards the A3-C1 domains of factor VIII.  Blood . 2001;  97 966-972
  • 23 Voorberg J, van den Brink N E. Phage display technology: a tool to explore the diversity of inhibitors to blood coagulation factor VIII.  Semin Thromb Hemost . 2000;  26 143-150
  • 24 van den Brink N E, Bril W S, Turenhout E A. et al . Two classes of germline genes both derived from the V(H) 1 family direct the formation of human antibodies that recognize distinct antigenic sites in the C2 domain of factor VIII.  Blood . 2002;  99 2828-2834
  • 25 Barrow R T, Healey J F, Gailiani D, Scandella D, Lollar P. Reduction of the antigenicity of factor VIII towards complex inhibitory antibody plasmas using multiply-substituted hybrid human/porcine factor VIII molecules.  Blood . 2000;  95 564-568
  • 26 Nogami K, Shima M, Giddings J C. et al . Circulating factor VIII immune complexes in patients with type 2 acquired hemophilia A and protection from activated protein C-mediated proteolysis.  Blood . 2001;  97 669-677
  • 27 McMillan C W, Shapiro S S, Whitehurst D. et al . The natural history of factor VIII:C inhibitors in patients with hemophilia A: a national cooperative study. II. Observations on the initial development of factor VIII:C inhibitors.  Blood . 1988;  71 344-348
  • 28 Schwaab R, Brackmann H H, Meyer C. et al . Mutation type determines risk of inhibitor formation.  Thromb Haemost . 1995;  74 1402-1406
  • 29 Fakharzadeh S, Kazazian H H. Correlation between factor VIII genotype and inhibitor development in hemophilia A.  Semin Thromb Hemost . 2000;  26 167-171
  • 30 Goodeve A, Williams I, Bray G L. et al . Relationship between factor VIII mutation type and inhibitor development in a cohort of previously untreated patients treated with recombinant factor VIII (Recombinate).  Thromb Haemost. 200;  83 844-848
  • 31 Singer S T, Addieggo Jr E J, Reason D C, Lucas A H. T lymphocyte proliferative responses induced by recombinant factor VIII in hemophilia A patients with inhibitors.  Thromb Haemost . 1996;  76 17-22
  • 32 Reding M T, Wu H, Krampf M. et al . Sensitization of CD4+ T cells to coagulation factor VIII: response in congenital and acquired hemophilia patients and in healthy subjects.  Thromb Haemost . 2000;  84 643-652
  • 33 Bi L, Lawler A M, Antonarakis S E. et al . Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A.  Nat Genet . 1995;  10 119-121
  • 34 Bi L, Sarkar R, Naas T. et al . Further characterization of factor VIII-deficient mice created by gene targeting: RNA and protein studies.  Blood . 1996;  88 3446-3450
  • 35 Sarkar R, Gao G, Chirmule N. et al . Partial correction of murine hemophilia A with neo-antigenic murine factor VIII.  Hum Gene Ther . 2000;  11 881-894
  • 36 Qian J, Borovok M, Bi L, Kazazian H H, Hoyer L W. Inhibitor antibody development and T cell response to human factor VIII in murine hemophilia A.  Thromb Haemost . 1999;  81 240-244
  • 37 Reipert B M, Ahmad R U, Turecek P L. et al . Characterization of antibodies induced by human factor VIII in a murine knockout model of hemophilia A.  Thromb Haemost . 2000;  84 826-832
  • 38 Hausl C, Maier E, Schwarz H P. et al . Long-term persistence of anti-factor VIII antibody-secreting cells in hemophilic mice after treatment with human factor VIII.  Thromb Haemost . 2002;  87 840-845
  • 39 Wu H, Reding M, Qian J. et al . Mechanism of the immune response to human factor VIII in murine hemophilia A.  Thromb Haemost . 2001;  85 125-133
  • 40 Rossi G, Sarkar J, Scandella D. Long-term induction of immune tolerance after blockade of CD40-CD40L interaction in a mouse model of hemophilia A.  Blood . 2001;  97 2750-2757
  • 41 Sasgary M, Ahmad R U, Schwarz H P, Turecek P, Reipert B M. Single cell analysis of factor VIII-specific T cells in hemophilic mice after treatment with human factor VIII.  Thromb Haemost . 2002;  87 266-272
  • 42 Chambers C A. The expanding world of co-stimulation: the two-signal model revisited.  Trends Immunol . 2001;  22 217-223
  • 43 Coyle A J, Gutierrez-Romas J-C. The expanding B7 superfamily: increasing complexity in costimulatory signals regulating T cell function.  Nat Immunol . 2001;  2 203-209
  • 44 Blazar B R, Taylor P A, Linsley P S, Vallera D A. In vivo blockade of CD28/CTLA4: B7/BB1 interaction with CTLA4-Ig reduces lethal murine graft-versus-host disease across the major histocompatibility complex barrier in mice.  Blood . 1994;  83 3815-3825
  • 45 Qian J, Collins M, Sharpe A, Hoyer L W. Prevention and treatment of factor VIII inhibitors in murine hemophilia A.  Blood . 2000;  95 1324-1329
  • 46 Kirk A D, Burkly L C, Batty D S. et al . Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates.  Nat Med . 1999;  5 686-693
  • 47 Qian J, Burkly L C, Smith E P. et al . Role of CD154 in the secondary immune response: the reduction of pre-existing splenic germinal centers and anti-factor VIII inhibitor titer.  Eur J Immunol . 2000;  30 2548-2554
  • 48 Reipert B M, Sasgary M, Ahmad R U. et al . Blockade of CD40/CD40 ligand interactions prevents induction of factor VIII inhibitors in hemophilic mice but does not induce lasting immune tolerance.  Thromb Haemost . 2002;  86 1345-1352
  • 49 Ewenstein B M, Hoots W K, Lusher J M. et al . Inhibition of CD40 ligand (CD154) in the treatment of factor VIII inhibitors.  Haematologica . 2000;  85 35-39
  • 50 Kawai T, Andrews D, Colvin R B, Sachs D H, Cosimi A B. Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand (Letter).  Nat Med . 2000;  6 114
  • 51 Brackmann H H, Gormsen J. Massive factor VIII infusion in haemophiliacs with factor VIII inhibitor, high responder (Letter).  Lancet . 1977;  8044 933
  • 52 Mauser-Bunschoten E P, Hieuwenhuis H K, Roosendaal G, van den Berg M H. Low-dose immune tolerance induction in hemophilia A patients with inhibitors.  Blood . 1995;  86 983-988
    >