Horm Metab Res 2003; 35(11/12): 802-808
DOI: 10.1055/s-2004-814143
Review
© Georg Thieme Verlag Stuttgart · New York

The Role of the IGF-I Receptor in the Regulation of Matrix Metalloproteinases, Tumor Invasion and Metastasis

D.  Zhang1 , A.  A.  Samani1 , P.  Brodt1
  • 1Department of Surgery (D.Z, A.S., P.B.) and Medicine (P.B.), McGill University Health Center, the Royal Victoria Hospital, Montreal, Quebec, Canada
Supported by grant # mop-10505 from the Canadian Institute for Health Research and by a Terry Fox New Frontiers initiative grant (to P.B.).
Further Information

Publication History

Received 29 September 2003

Accepted without Revision 27 October 2003

Publication Date:
07 January 2004 (online)

Abstract

The breakdown of the extracellular matrix (ECM) by proteinases is an essential step in the process of cancer invasion and metastasis. Malignant progression is frequently associated with upregulated production and/or activity of one or several ECM degrading proteinases. Prominent among them are the matrix metalloproteinases (MMPs). The MMPs constitute a family of structurally related, zinc-dependent endopeptidases collectively capable of degrading essentially all the components of the extracellular matrix. At present, 23 members of the human MMP gene family are known. The increased expression and/or activity of one or more members of this family have been documented in essentially all human malignancies and some have been implicated in the process of angiogenesis. Prominent among those are MMP-2 and MT1-MMP, two metalloproteinases that form a cell membrane-associated complex leading to MMP-2 activation and ECM proteolysis. Here, we review our data that identified the type 1 insulin-like growth factor receptor (IGF-IR) as a regulator of tumor invasion and the synthesis of MT1-MMP and MMP-2 and report on the signal transduction pathways that mediate this regulation. These findings are discussed in the context of a broader review of the role of the IGF-IR/IGF axis in the regulation of tumor invasion and metastasis.

References

  • 1 Brinckerhoff C E, Matrisian L M. Matrix metalloproteinases: a tail of a frog that became a prince.  Nat Rev Mol Cell Biol. 2002;  3 207-214
  • 2 Somerville R P, Oblander S A, Apte S S. Matrix metalloproteinases: old dogs with new tricks.  Genome Biol. 2003;  4 216
  • 3 Baker E A, Leaper D J. Profiles of matrix metalloproteinases and their tissue inhibitors in intraperitoneal drainage fluid: relationship to wound healing.  Wound Repair Regen. 2003;  11 268-274
  • 4 Zaidi M, Blair H C, Moonga B S, Abe E, Huang C L. Osteoclastogenesis, bone resorption, and osteoclast-based therapeutics.  J Bone Miner Res. 2003;  18 599- 609
  • 5 Murphy G, Knauper V, Atkinson S, Butler G, English W, Hutton M, Stracke J, Clark I. Matrix metalloproteinases in arthritic disease.  Arthritis Res. 2002;  4 S39-49
  • 6 Ikeda U, Shimada K. Matrix metalloproteinases and coronary artery diseases.  Clin Cardiol. 2003;  26 55-59
  • 7 Vihinen P, Kahari V M. Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets.  Int J Cancer. 2002;  99 157-166
  • 8 Giunciuglio D, Culty M, Fassina G, Masiello L, Melchiori A, Paglialunga G, Arand G, Ciardiello F, Basolo F, Thompson E W. et al . Invasive phenotype of MCF10A cells overexpressing c-Ha-ras and c-erbB-2 oncogenes.  Int J Cancer. 1995;  63 815-822
  • 9 Kaya M, Yoshida K, Higashino F, Mitaka T, Ishii S, Fujinaga K. A single ets-related transcription factor, E1AF, confers invasive phenotype on human cancer cells.  Oncogene. 1996;  12 221-227
  • 10 Stetle-Stevenenson W. Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention.  J Clin Invest. 1999;  103 1237-1241
  • 11 Pirila E, Sharabi A, Salo T, Quaranta V, Tu H, Heljasvaara R, Koshikawa N, Sorsa T, Maisi P. Matrix metalloproteinases process the laminin-5 gamma 2-chain and regulate epithelial cell migration.  Biochem Biophys Res Commun. 2003;  303 1012-1017
  • 12 Levi E, Fridman R, Miao H Q, Ma Y S, Yayon A, Vlodavsky I. Matrix metalloproteinase 2 releases active soluble ectodomain of fibroblast growth factor receptor 1.  Proc Natl Acad Sci USA. 1996;  93 7069-7074
  • 13 Itoh T, Tanioka M, Yoshida H, Yoshioka T, Nishimoto H, Itohara S. Reduced angiogenesis and tumor progression in gelatinase A-deficient mice.  Cancer Res. 1998;  58 1048-1051
  • 14 Llorens A, Vinyals A, Alia P, Lopez-Barcons L, Gonzalez-Garrigues M, Fabra A. Metastatic ability of MXT mouse mammary subpopulations correlates with clonal expression and/or membrane-association of gelatinase A.  Mol Carcinog. 1997;  19 54-66
  • 15 Bashyam M D. Understanding cancer metastasis: an urgent need for using differential gene expression analysis.  Cancer. 2002;  94 1821-1829
  • 16 Nagata M, Fujita H, Ida H, Hoshina H, Inoue T, Seki Y, Ohnishi M, Ohyama T, Shingaki S, Kaji M, Saku T, Takagi R. Identification of potential biomarkers of lymph node metastasis in oral squamous cell carcinoma by cDNA microarray analysis.  Int J Cancer. 2003;  106 683-689
  • 17 Wasenius V M, Hemmer S, Kettunen E, Knuutila S, Franssila K, Joensuu H. Hepatocyte growth factor receptor, matrix metalloproteinase-11, tissue inhibitor of metalloproteinase-1, and fibronectin are up-regulated in papillary thyroid carcinoma: a cDNA and tissue microarray study.  Clin Cancer Res. 2003;  9 68-75
  • 18 Zhang X, Liu Y, Gilcrease M Z, Yuan X H, Clayman G L, Adler-Storthz K, Chen Z. A lymph node metastatic mouse model reveals alterations of metastasis-related gene expression in metastatic human oral carcinoma sublines selected from a poorly metastatic parental cell line.  Cancer. 2002;  95 1663-1672
  • 19 Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E, Seiki M. A matrix metalloproteinase expressed on the surface of invasive tumour cells.  Nature. 1994;  370 61-65
  • 20 Seiki M, Yana I. Roles of pericellular proteolysis by membrane type-1 matrix metalloproteinase in cancer invasion and angiogenesis.  Cancer Sci. 2003;  94 569-574
  • 21 Holmbeck K, Bianco P, Birkedal-Hansen H. MT1-MMP: a collagenase essential for tumor cell invasive growth.  Cancer Cell. 2003;  4 83-84
  • 22 Pei D, Weiss S J. Transmembrane-deletion mutants of the membrane-type matrix metalloproteinase-1 process progelatinase A and express intrinsic matrix-degrading activity.  J Biol Chem. 1996;  271 9135-9140
  • 23 Hiraoka N, Allen E, Apel I J, Gyetko M R, Weiss S J. Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins.  Cell. 1998;  95 365- 377
  • 24 Koshikawa N, Giannelli G, Cirulli V, Miyazaki K, Quaranta V. Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5.  J Cell Biol. 2000;  148 615-624
  • 25 Ohuchi E, Imai K, Fujii Y, Sato H, Seiki M, Okada Y. Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules.  J Biol Chem. 1997;  272 2446-2451
  • 26 Imai K, Ohuchi E, Aoki T, Nomura H, Fujii Y, Sato H, Seiki M, Okada Y. Membrane-type matrix metalloproteinase 1 is a gelatinolytic enzyme and is secreted in a complex with tissue inhibitor of metalloproteinases 2.  Cancer Res. 1996;  56 2707- 2710
  • 27 Will H, Atkinson S J, Butler G S, Smith B, Murphy G. The soluble catalytic domain of membrane type 1 matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates autoproteolytic activation. Regulation by TIMP-2 and TIMP-3.  J Biol Chem. 1996;  271 17 119-17 123
  • 28 Seiki M. Membrane-type matrix metalloproteinases.  APMIS. 1999;  107 137-143
  • 29 Atkinson S J, Crabbe T, Cowell S, Ward R V, Butler M J, Sato H, Seiki M, Reynolds J J, Murphy G. Intermolecular autolytic cleavage can contribute to the activation of progelatinase A by cell membranes.  J Biol Chem. 1995;  270 30 479 - 30 485
  • 30 Holmbeck K, Bianco P, Caterina J, Yamada S, Kromer M, Kuznetsov S A, Mankani M, Robey P G, Poole A R, Pidoux I, Ward J M, Birkedal-Hansen H. MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover.  Cell. 1999;  99 81-92
  • 31 Graham C H, Connelly I, MacDougall J R, Kerbel R S, Stetler-Stevenson W G, Lala P K. Resistance of malignant trophoblast cells to both the anti-proliferative and anti-invasive effects of transforming growth factor-beta.  Exp Cell Res. 1994;  214 93-99
  • 32 Bar-Eli M. Role of interleukin-8 in tumor growth and metastasis of human melanoma.  Pathobiology. 1999;  67 12-18
  • 33 Lohi J, Lehti K, Westermarck J, Kahari V M, Keski-Oja J. Regulation of membrane-type matrix metalloproteinase-1 expression by growth factors and phorbol 12-myristate 13-acetate.  Eur J Biochem. 1996;  239 239-247
  • 34 Long L, Rubin R, Baserga R, Brodt P. Loss of the metastatic phenotype in murine carcinoma cells expressing an antisense RNA to the insulin-like growth factor receptor.  Cancer Res. 1995;  55 1006-1009
  • 35 Long L, Rubin R, Brodt P. Enhanced invasion and liver colonization by lung carcinoma cells overexpressing the type 1 insulin-like growth factor receptor.  Exp Cell Res. 1998;  238 116-121
  • 36 Long L, Navab R, Brodt P. Regulation of the Mr 72,000 type IV collagenase by the type I insulin-like growth factor receptor.  Cancer Res. 1998;  58 3243-3247
  • 37 Brodt P, Fallavollita L, Khatib A M, Samani A A, Zhang D. Cooperative regulation of the invasive and metastatic phenotypes by different domains of the type I insulin-like growth factor receptor beta subunit.  J Biol Chem. 2001;  276 33 608-33 615
  • 38 Zhang D, Brodt P. Type 1 insulin-like growth factor regulates MT1-MMP synthesis and tumor invasion via PI 3-kinase/Akt signaling.  Oncogene. 2003;  22 974-982
  • 39 Brodt P, Samani A, Navab R. Inhibition of the type I insulin-like growth factor receptor expression and signaling: novel strategies for antimetastatic therapy.  Biochem Pharmacol. 2000;  60 1101-1107
  • 40 Macaulay V M. Insulin-like growth factors and cancer.  Br J Cancer. 1992;  65 311-320
  • 41 Lopez T, Hanahan D. Elevated levels of IGF-I receptor convey invasive and metastatic capability in a mouse model of pancreatic islet tumorigenesis.  Cancer Cell. 2002;  1 339-353
  • 42 Samani A A, Brodt P. The receptor for the type I insulin-like growth factor and its ligands regulate multiple cellular functions that impact on metastasis.  Surg Oncol Clin N Am. 2001;  10 289-312
  • 43 Barozzi C, Ravaioli M, D'Errico A, Grazi G L, Poggioli G, Cavrini G, Mazziotti A, Grigioni W F. Relevance of biologic markers in colorectal carcinoma: a comparative study of a broad panel.  Cancer. 2002;  94 647-657
  • 44 Xie Y, Skytting B, Nilsson G, Brodin B, Larsson O. Expression of insulin-like growth factor-1 receptor in synovial sarcoma: association with an aggressive phenotype.  Cancer Res. 1999;  59 3588-3591
  • 45 All-Ericsson C, Girnita L, Seregard S, Bartolazzi A, Jager M J, Larsson O. Insulin-like growth factor-1 receptor in uveal melanoma: a predictor for metastatic disease and a potential therapeutic target.  Invest Ophthalmol Vis Sci. 2002;  43 1-8
  • 46 Samani A A, Fallavollita L, Jaalouk D E, Galipeau J, Brodt P. Inhibition of carcinoma cell growth and metastasis by a vesicular stomatitis virus G-pseudotyped retrovector expressing type I insulin-like growth factor receptor antisense.  Hum Gene Ther. 2001;  12 1969-1977
  • 47 Tang Y, Zhang D, Fallavollita L, Brodt P. Vascular endothelial growth factor C expression and lymph node metastasis are regulated by the type I insulin-like growth factor receptor.  Cancer Res. 2003;  63 1166-1171
  • 48 Kiely P A, Sant A, O'Connor R. RACK1 is an insulin-like growth factor 1 (IGF-I) receptor-interacting protein that can regulate IGF-I-mediated Akt activation and protection from cell death.  J Biol Chem. 2002;  277 22 581-22 589
  • 49 Yoon A, Hurta R A. Insulin like growth factor-1 selectively regulates the expression of matrix metalloproteinase-2 in malignant H-ras transformed cells.  Mol Cell Biochem. 2001;  223 1-6
  • 50 Fowlkes J L, Enghild J J, Suzuki K, Nagase H. Matrix metalloproteinases degrade insulin-like growth factor-binding protein-3 in dermal fibroblast cultures.  J Biol Chem. 1994;  269 25 742-25 746
  • 51 Thrailkill K M, Quarles L D, Nagase H, Suzuki K, Serra D M, Fowlkes J L. Characterization of insulin-like growth factor-binding protein 5-degrading proteases produced throughout murine osteoblast differentiation.  Endocrinology. 1995;  136 3527-3533
  • 52 Manes S, Llorente M, Lacalle R A, Gomez-Mouton C, Kremer L, Mira E, Martinez A C. The matrix metalloproteinase-9 regulates the insulin-like growth factor-triggered autocrine response in DU-145 carcinoma cells.  J Biol Chem. 1999;  274 6935-6945
  • 53 Butler A A, Yakar S, Gewolb I H, Karas M, Okubo Y, LeRoith D. Insulin-like growth factor-I receptor signal transduction: at the interface between physiology and cell biology.  Comp Biochem Physiol B Biochem Mol Biol. 1998;  121 19- 26
  • 54 Petley T, Graff K, Jiang W, Yang H, Florini J. Variation among cell types in the signaling pathways by which IGF-I stimulates specific cellular responses.  Horm Metab Res. 1999;  31 70-76
  • 55 Walsh P T, Smith L M, O'Connor R. Insulin-like growth factor-1 activates Akt and Jun N-terminal kinases (JNKs) in promoting the survival of T lymphocytes.  Immunology. 2002;  107 461-471
  • 56 Touyz R M, Cruzado M, Tabet F, Yao G, Salomon S, Schiffrin E L. Redox-dependent MAP kinase signaling by Ang II in vascular smooth muscle cells: role of receptor tyrosine kinase transactivation.  Can J Physiol Pharmacol. 2003;  81 159-167
  • 57 Chang F, Lee J T, Navolanic P M, Steelman L S, Shelton J G, Blalock W L, Franklin R A, McCubrey J A. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy.  Leukemia. 2003;  17 590-603
  • 58 Vivanco I, Sawyers C L. The phosphatidylinositol 3-kinase AKT pathway in human cancer.  Nat Rev Cancer. 2002;  2 489-501
  • 59 Tanaka M, Grossman H B. In vivo gene therapy of human bladder cancer with PTEN suppresses tumor growth, downregulates phosphorylated Akt, and increases sensitivity to doxorubicin.  Gene Ther. 2003;  10 1636-1642
  • 60 Zhang D, Brodt P. Dual-regulation of MMP-2 expression by the IGF-I receptor: The PI 3-kinase/Akt and Raf/MAP kinase pathways transmit opposing signals.  Proc Am Assoc Cancer Res. 2003;  44 R3263
  • 61 Huang S, Houghton P J. Targeting mTOR signaling for cancer therapy.  Curr Opin Pharmacol. 2003;  3 371-377
  • 62 Muller M, Dietel M, Turzynski A, Wiechen K. Antisense phosphorothioate oligodeoxynucleotide down-regulation of the insulin-like growth factor I receptor in ovarian cancer cells.  Int J Cancer. 1998;  77 567-571
  • 63 Burfeind P, Chernicky C L, Rininsland F, Ilan J, Ilan J. Antisense RNA to the type I insulin-like growth factor receptor suppresses tumor growth and prevents invasion by rat prostate cancer cells in vivo.  Proc Natl Acad Sci USA. 1996;  93 7263-7268
  • 64 Neuenschwander S, Roberts C T Jr, LeRoith D. Growth inhibition of MCF-7 breast cancer cells by stable expression of an insulin-like growth factor I receptor antisense ribonucleic acid.  Endocrinology. 1995;  136 4298-4303
  • 65 Lee C T, Wu S, Gabrilovich D, Chen H, Nadaf-Rahrov S, Ciernik I F, Carbone D P. Antitumor effects of an adenovirus expressing antisense insulin-like growth factor I receptor on human lung cancer cell lines.  Cancer Res. 1996;  56 3038-3041
  • 66 Nakamura K, Hongo A, Kodama J, Miyagi Y, Yoshinouchi M, Kudo T. Down-regulation of the insulin-like growth factor I receptor by antisense RNA can reverse the transformed phenotype of human cervical cancer cell lines.  Cancer Res. 2000;  60 760-765
  • 67 Kalebic T, Tsokos M, Helman L J. In vivo treatment with antibody against IGF-I receptor suppresses growth of human rhabdomyosarcoma and down-regulates p34cdc2.  Cancer Res. 1994;  54 5531-5534
  • 68 Pietrzkowski Z, Mulholland G, Gomella L, Jameson B A, Wernicke D, Baserga R. Inhibition of growth of prostatic cancer cell lines by peptide analogues of insulin-like growth factor 1.  Cancer Res. 1993;  53 1102-1106
  • 69 Kalebic T, Blakesley V, Slade C, Plasschaert S, LeRoith D, Helman L J. Expression of a kinase-deficient IGF-I-R suppresses tumorigenicity of habdomyosarcoma cells constitutively expressing a wild type IGF-I-R.  Int J Cancer. 1998;  76 223-227
  • 70 Reiss K, D'Ambrosio C, Tu X, Tu C, Baserga R. Inhibition of tumor growth by a dominant negative mutant of the insulin-like growth factor I receptor with a bystander effect.  Clin Cancer Res. 1998;  4 2647-2655
  • 71 Garcia-Echeverria C, Grueggen J, Capraro H G, Evans D B, Ferrari S, Fabbro D, Furet P, Gelger T, Liebetanz J, Marti A, Martiny-Baron G, Mestan J, Pearson M A, Ruetz S, Stolz B, Holmann F. Characterization of potent and selective kinase inhibitor of IGF-IR.  Proc Am Assoc Cancer Res. 2003;  44 1008

P. Brodt

The Division of Surgical Research · Royal Victoria Hospital, Room H6.25

687 Pine Ave. W. · Montreal, Que. · Canada H3A 1A1

Phone: +001(514)842-1231 (Ext. 36692)

Fax: +001(514)843-1411 ·

Email: pnina.brodt@muhc.mcgill.ca

    >