Z Orthop Ihre Grenzgeb 2004; 142(3): 366-370
DOI: 10.1055/s-2004-822589
Grundlagenforschung

© Georg Thieme Verlag Stuttgart · New York

Größe und Form kommerziell erhältlicher Polyethylenpartikel für In-vitro- und In-vivo-Versuche

Size and Shape Description of Commercially Available Polyethylene Particles for In Vitro and In Vivo ExperimentsM. von Knoch1 , 2 , C. Sprecher3 , B. Barden1 , G. Saxler1 , F. Löer1 , M. Wimmer3 , 4
  • 1Klinik und Poliklinik für Orthopädie, Universität Duisburg-Essen
  • 2Mayo Clinic Rochester, Department of Orthopaedics, Rochester, MN, USA
  • 3AO Research Institute, Davos, Schweiz
  • 4Rush Presbyterian St. Luke's Medical Center, Department of Orthopedic Surgery, Chicago, IL, USA
Further Information

Publication History

Publication Date:
13 July 2004 (online)

Zusammenfassung

Fragestellung: Die Lebensdauer von Hüftendoprothesen ist limitiert durch Osteolysen und Lockerungsprozesse, die aus der biologischen Reaktion auf Abriebpartikel aus Polyethylen resultieren können. Hierbei sind Partikel unter 1 µm besonders reaktiv. Diese Partikelgrößen sind nicht einfach verfügbar zum Zwecke von Experimenten. Material und Methode: Wir führten eine morphologische Analyse von kommerziell erhältlichen, sehr kleinen Polyethylenpartikeln (Ceridust®) durch mit der Frage, ob die Größenverteilung dieser speziellen Partikel für In-vitro und In-vivo-Versuche geeignet sind. Es wurden 1 978 Partikel vermessen. Die Partikelgröße wurde elektronenmikroskopisch ermittelt und als ‚Equivalent Circle Diameter’ (ECD) beschrieben. Die Morphologie der Partikel wurde mit dem Feret Ratio beschrieben. Zusätzlich wurden die Ceridustpartikel mit verschiedenen Polyethylenpartikelsorten aus Hüftsimulatorexperimenten verglichen. Ergebnisse: Die elektronenmikroskopische Analyse ergab, dass mehr als 35 % der Partikel kleiner als 1 µm waren. Die Partikelgröße (ECD) betrug 1,75 µm ± 1,43 µm (Median 1,42 µm). Das Minimum lag bei 0,06 µm, das Maximum bei 11,06 µm. Die Feret Ratio betrug 0,58 ± 0,17 (Median 0,63). Das Minimum lag bei 0,07, das Maximum bei 0,93. Die Mehrzahl der Ceridustpartikel hatte eine raue Oberflächenmorphologie. Im Vergleich zu Polyethylenpartikeln aus Hüftsimulatorexperimenten sind die Ceridustpartikel rauer, weniger länglich und zeigen eine homogenere Größenverteilung. Schlussfolgerungen: Die hier untersuchten reinen, kommerziell erhältlichen Polyethylenpartikel sind wegen ihrer guten Verfügbarkeit, geringen Kosten und des großen Anteiles an sehr kleinen Partikeln für In-vitro- und In-vivo-Experimente geeignet.

Abstract

Aim: The longevity of total hip arthroplasty is sometimes limited by osteolysis and aseptic loosening. Aseptic loosening may be caused by the biologic reaction to polyethylene wear particles. Particles of less than 1 µm diameter are of particular importance. These particles are not easily available for experimental use. Method: We performed a morphologic analysis of commercially available, very small polyethylene particles (Ceridust®) in order to determine the specific size distribution. We measured 1 978 particles. Size analysis was performed using an electron microscope. Particle size was described as the equivalent circle diameter (ECD). Particle morphology was described as feret ratio. In addition, Ceridust® particles were compared to different particles stemming from a hip simulator experiment. Results: More than 35 % of the particles were less than 1 µm in size. The particle size was 1.75 µm ± 1.43 µm (median 1.42 µm). The minimum was 0.06 µm, the maximum was 11.06 µm. The feret ratio was 0.58 ± 0.17 (median 0.63). The minimum was 0.07, the maximum was 0.93. The majority of Ceridust® particles had a rough surface. Compared to polyethylene particles stemming from a hip simulator experiment, Ceridust® particles had a rougher surface, were less longitudinal, and had a more even size distribution. Conclusions: The pure, commercially available polyethylene particles analyzed here are suitable for in vitro and in vivo experiments due to their easy availability, minor costs, and large fraction of very small particles.

Literatur

  • 1 Santavirta S. et al . Studies of host response to orthopedic implants and biomaterials.  J Long Term Eff Med Implants. 1999;  9 67-76
  • 2 Böhler M, Plenk H, Salzer M. Alumina ceramic bearings for hip endoprostheses: the Austrian experiences.  Clin Orthop. 2000;  379 85-93
  • 3 Willert H G, Bertram H, Buchhorn G H. Osteolysis in alloarthroplasty of the hip. The role of ultra-high molecular weight polyethylene wear particles.  Clin Orthop. 1990;  258 95-107
  • 4 Bos I, Lindner B, Seydel U, Johannisson R, Dorre E, Henssge J, Lohrs U. The cause of loosening in cemented hip joint prostheses. Light and electron microscopy study and laser microprobe mass analysis.  Z Orthop Ihre Grenzgeb. 1990;  128 73-82
  • 5 Bos I, Meeuwssen E, Henssge E J, Lohrs U. Differences in polyethylene wear in hip joint prostheses with ceramic- and with metal-polyethylene combination of the articulation surfaces - a study of surgical and of autopsy materials.  Z Orthop Ihre Grenzgeb. 1991;  129 507-515
  • 6 Bos I, Berner J, Diebold J, Lohrs U. Histological and morphometric studies of femurs with stable hip joint replacement. An autopsy study with special reference to factors leading to late loosening.  Z Orthop Ihre Grenzgeb. 1995;  133 460-466
  • 7 von Knoch M, Plotz G, Prymka M, Fortsch M, von Knoch F. Polyethylene content and cell size of foreign body giant cells in aseptic hip prosthesis loosening - a histomorphometric study.  Z Orthop Ihre Grenzgeb. 2000;  138 522-525
  • 8 Wilke A, Endres S, Griss P, Herz U. Cytokine profile of a human bone marrow cell culture on exposure to titanium-aluminium-vanadium particles.  Z Orthop Ihre Grenzgeb. 2002;  140 83-89
  • 9 Schwarz E M, Lu A P, Goater J J, Benz E B, Kollias G, Rosier R N, Puzas J E, O'Keefe R J. Tumor necrosis factor-alpha/nuclear transcription factor-kappaB signaling in periprosthetic osteolysis.  J Orthop Res. 2000;  18 472-480
  • 10 Plenk H. Prosthesis-bone interface.  J Biomed Mater Res. 1998;  43 350-355
  • 11 Shanbhag A S, Jacobs J J, Black J, Galante J O, Glant T T. Macrophage/particle interactions: effect of size, composition and surface area.  J Biomed Mat Res. 1994;  28 81-90
  • 12 Ingham E, Fisher J. Biological reactions to wear debris in total joint replacement. Proceedings of the Institution of Mechanical Engineers. Part H.  J Eng Med. 2000;  214 21-37
  • 13 Jacobs J J, Shanbhag A S, Glant T T, Black J, Galante J O. Wear Debris in Total Joint Replacements.  J Am Acad Orth Surg. 1994;  2 212-220
  • 14 Barden B, Ding Y, Saxler G, Loer F. Response of human macrophages to challenge with polyethylene wear debris harvested during revision arthroplasty. Annual Meeting European Orthopaedic Research Society EORS, Lausanne, Switzerland 2002
  • 15 Pienkowski D, Nassutt R, Lampe F, Schneider E, Morlock M M. A new screening method designed for wear analysis of bearing surfaces used in total hip arthroplasty. In: Jacobs J, Cendrowska T, Speiser P (eds). Alternative bearing surfaces in total joint replacement. ASTM STP 1346. American Society for Testing Materials 1998; 30-43
  • 16 Lohmann C H, Schwartz Z, Koster G, Jahn U, Buchhorn G H, MacDougall M J, Casasola D, Liu Y, Sylvia V L, Dean D D, Boyan B D. Phagocytosis of wear debris by osteoblasts affects differenziation and local factor production in a manner dependent on particle composition.  Biomat. 2000;  21 551-561
  • 17 Wimmer M A, Nassutt R, Lampe F, Schneider E, Morlock M M. A new screening method designed for wear analysis of bearing surfaces used in total hip arthroplasty. In: Jacobs J, Cendrowska T, Speiser P (eds). Alternative Bearing Surfaces in Total Joint Replacement. ASTM STP 1346. American Society for Testing Materials 1998; 30-43
  • 18 Clarke I C, Johnson S, Phipatanakul W, Good V. Effects of hip-loading input on simulated wear of Al2O3-PTFE materials.  Wear. 2001;  250 159-166
  • 19 Sprecher C, Wimmer M A. Size independent morphological description of polyethylene particles.  J Biomech. 2001;  34 71
  • 20 Sprecher C, Schneider E, Wimmer M A. Generalized size and shape description of UHMWPE wear debris - A Comparison of Cross-linked, Enhanced Fused, and Standard Polyethylene Particles. In: Kurtz SM, Gsell R, Martell J (eds). Crosslinked and Thermally Treated Ultra-High Molecular Weight Polyethylene for Joint Replacements. ASTM STP 1445. ASTM International, West Conshohocken, PA 2003
  • 21 Clarke I C, Gustafson A, Jung H, Fujisawa A. Hip simulator ranking of polyethylene wear.  Acta Orthop Scand. 1996;  67 128-132
  • 22 Kaddick C, Wimmer M A. Hip simulator wear testing according to the newly introduced standard ISO 14242.  Proc Instn Mech Engrs. 2001;  215 429-442
  • 23 Shanbhag A S, Jacobs J J, Glant T T, Gilbert J L, Black J, Galante J O. Composition and morphology of wear debris in failed uncemented total hip replacement.  J Bone Joint Surg [Br]. 1994;  76 60-66
  • 24 Campbell P, Ma S, Yeom B, McKellop H, Schmalzried T P, Amstutz H C. Isolation of predominantly submicron-sized UHMWPE wear particles from periprosthetic tissues.  J Biomed Mater Res. 1995;  29 127-131
  • 25 Benz E B, Federman M, Godleski J J, Bierbaum B E, Thornhill T S, Spector M. Transmission electron microscopy of intracellular particles of polyethylene from joint replacement prostheses: size distribution and cellular response.  Biomat. 2001;  22 2835-2842
  • 26 von Knoch M, Buchhorn G, von Knoch F, Koster G, Willert H G. Intracellular measurement of polyethylene particles. A histomorphometric study.  Arch Orthop Trauma Surg. 2001;  121 399-402
  • 27 Shanbhag A S, Vai C W, Qureshi S A, Rubash H E. Characteristics of cross-linked UHMWPE wear debris. 47th Orthopaedic Research Society, Transactions, San Francisco, California, 2001; 26: 0002
  • 28 Scott M, Widding K, Ries M, Shanbhag A S. Analyses of conventional and crosslinked UHMWPE tested in an anatomic hip simulator. 47th Orthopaedic Research Society, Transactions, San Francisco, California, 2001; 26: 0001
  • 29 Endo M, Tipper J L, Barton D C, Stone M H, Ingham E, Fisher J. Comparison of wear, wear debris and functional biological activity of moderately crosslinked and non-crosslinked polyethylenes in hip prostheses.  Proc Inst Mech Eng [H]. 2002;  216 111-122
  • 30 Green T R, Fisher J, Matthews J B, Stone M H, Ingham E. Effect of size and dose on bone resorption activity of macrophages by in vitro clinically relevant ultra high molecular weight polyethylene particles.  J Biomed Mater Res. 2000;  53 490-497
  • 31 von Knoch M, Jewison D E, Sibonga J D, Sprecher C, Morrey B F, Löer F, Berry D J, Scully S P. The effectiveness of commercially available polyethylene versus titanium particles in inducing osteolysis in murine calvaria.  J Orthop Res. 2004;  22 (2) 237-243

Dr. med. Marius von Knoch

Klinik und Poliklinik für Orthopädie, Universität Duisburg-Essen

Pattbergstraße 1-3

45239 Essen

Phone: +49-2 01-40 89-21 46

Fax: +49-2 01-40 89-27 22

Email: mariusvonknoch@yahoo.com

    >