Horm Metab Res 2004; 36(11/12): 811-821
DOI: 10.1055/s-2004-826168
Review
© Georg Thieme Verlag KG Stuttgart · New York

The Development of Beta-cell Mass: Recent Progress and Potential Role of GLP-1

D.  A.  Stoffers1
  • 1Division of Endocrinology, Diabetes and Metabolism, Department of Medicine and Penn Diabetes Center, University of Pennsylvania School of Medicine, Philadelphia, USA
Further Information

Publication History

Received 17 August 2004

Accepted after revision 22 August 2004

Publication Date:
18 January 2005 (online)

Abstract

Over the last decade, remarkable strides in incretin hormone biology have laid the foundation for our more recent appreciation that GLP-1 not only regulates mature β-cell function but also critically regulates β-cell differentiation, β-cell proliferation and β-cell survival. Dysregulated β-cell growth and function are central to the pathophysiology of both type 1 and type 2 diabetes. Thus, GLP-1 receptor agonists are being intensively developed for the treatment of human diabetes and are likely to become available to clinical use in the near future. A general overview of β-cell development will be provided, with particular emphasis on recent contributions to our understanding of pancreas and islet development during the embryonic, fetal and neonatal periods. The transcriptional hierarchy and extracellular signals governing events during these periods will be highlighted. Evidence suggesting a role for endogenous GLP-1 and GLP-1 receptor during β-cell development will be reviewed. Finally, the therapeutic potential for intervention with GLP1 receptor agonists during the neonatal period will be discussed.

References

  • 1 Kahn S E. The importance of beta-cell failure in the development and progression of type 2 diabetes.  J Clin Endocrinol Metab. 2001;  86 4047-4058
  • 2 Kahn S E. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes.  Diabetologia. 2003;  46 3-19
  • 3 Butler A E, Janson J, Bonner-Weir S, Ritzel R, Rizza R A, Butler P C. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes.  Diabetes. 2003;  52 102-110
  • 4 Kieffer T J, Habener J F. The glucagon-like peptides.  Endocr Rev. 1999;  20 876-913
  • 5 Nielsen L L, Young A A, Parkes D G. Pharmacology of exenatide (synthetic exendin-4): a potential therapeutic for improved glycemic control of type 2 diabetes.  Regul Pept. 2004;  117 77-88
  • 6 Kolterman O G, Buse J B, Fineman M S, Gaines E, Heintz S, Bicsak T A, Taylor K, Kim D, Aisporna M, Wang Y, Baron A D. Synthetic exendin-4 (exenatide) significantly reduces postprandial and fasting plasma glucose in subjects with type 2 diabetes.  J Clin Endocrinol Metab. 2003;  88 3082-3089
  • 7 List J F, Habener J F. Glucagon-like peptide 1 agonists and the development and growth of pancreatic beta-cells.  Am J Physiol Endocrinol Metab. 2004;  286 E875-E881
  • 8 MacDonald P E, El-kholy W, Riedel M J, Salapatek A MF, Light P E, Wheeler M B. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion.  Diabetes. 2002;  51 S434-S442
  • 9 Holz G G. Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell.  Diabetes. 2004;  53 5-13
  • 10 Stoffers D A, Desai B M, DeLeon D D, Simmons R A. Neonatal exendin-4 prevents the development of diabetes in the intrauterine growth retarded rat.  Diabetes. 2003;  52 734-740
  • 11 Stoffers D A, Kieffer T J, Hussain M A, Drucker D J, Bonner-Weir S, Habener J F, Egan J M. Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas.  Diabetes. 2000;  49 741-748
  • 12 Movassat J, Beattie G M, Lopez A D, Hayek A. Exendin 4 up-regulates expression of PDX 1 and hastens differentiation and maturation of human fetal pancreatic cells.  J Clin Endocrinol Metab. 2002;  87 4775-4781
  • 13 Abraham E J, Leech C A, Lin J C, Zulewski H, Habener J F. Insulinotropic hormone glucagon-like peptide-1 differentiation of human pancreatic islet-derived progenitor cells into insulin-producing cells.  Endocrinology. 2002;  143 3152-3161
  • 14 Zhou J, Pineyro M A, Wang X, Doyle M E, Egan J M. Exendin-4 differentiation of a human pancreatic duct cell line into endocrine cells: involvement of PDX-1 and HNF3beta transcription factors.  J Cell Physiol. 2002;  192 304-314
  • 15 Wang X, Cahill C M, Pineyro M A, Zhou J, Doyle M E, Egan J M. Glucagon-like peptide-1 regulates the beta cell transcription factor, PDX-1, in insulinoma cells.  Endocrinology. 1999;  140 4904-4907
  • 16 Hui H, Wright C V, Perfetti R. Glucagon-like peptide 1 induces differentiation of islet duodenal homeobox-1-positive pancreatic ductal cells into insulin-secreting cells.  Diabetes. 2001;  50 785-796
  • 17 Stoffers D A, Thomas M K, Habener J F. Homeodomain protein IDX-1: a master regulator of pancreas development and insulin gene expression.  Trends in Endocrinology and Metabolism. 1997;  8 145-151
  • 18 Melloul D. Transcription factors in islet development and physiology: role of PDX-1 in beta-cell function.  Ann N Y Acad Sci. 2004;  1014 28-37
  • 19 Jhala U S, Canettieri G, Screaton R A, Kulkarni R N, Krajewski S, Reed J, Walker J, Lin X, White M F, Montminy M. cAMP promotes pancreatic beta-cell survival via CREB-mediated induction of IRS2.  Genes Dev. 2003;  17 1575-1580
  • 20 Prado C L, Pugh-Bernard A E, Elghazi L, Sosa-Pineda B. Ghrelin cells replace insulin-producing beta cells in two mouse models of pancreas development.  Proc Natl Acad Sci USA. 2004;  101 2924-2929
  • 21 Bonner-Weir S, Baxter L A, Schuppin G T, Smith F E. A second pathway for regeneration of adult exocrine and endocrine pancreas: A possible recapitulation of embryonic development.  Diabetes. 1993;  42 1715-1720
  • 22 Bonner-Weir S. Regulation of pancreatic beta-cell mass in vivo.  Recent Prog Horm Res. 1994;  49 91-104
  • 23 Scaglia L, Cahill C J, Finegood D T, Bonner-Weir S. Apoptosis participates in the remodeling of the endocrine pancreas in the neonatal rat.  Endocrinology. 1997;  138 1736-1741
  • 24 Petrik J, Arany E, McDonald T J, Hill D J. Apoptosis in the pancreatic islet cells of the neonatal rat is associated with a reduced expression of insulin-like growth factor II that may act as a survival factor.  Endocrinology. 1998;  139 2994-3004
  • 25 Finegood D T, Scaglia L, Bonner-Weir S. Dynamics of β-cell mass in the growing rat pancreas: Estimation with a simple mathematical model.  Diabetes. 1995;  44 249-256
  • 26 Kim S K, MacDonald R J. Signaling and transcriptional control of pancreatic organogenesis.  Curr Opin Genet Dev. 2002;  12 540-547
  • 27 Jensen J. Gene regulatory factors in pancreatic development.  Dev Dyn. 2004;  229 176-200
  • 28 Murtaugh L C, Melton D A. Genes, signals, and lineages in pancreas development.  Annu Rev Cell Dev Biol. 2003;  19 71-89
  • 29 Wilson M E, Scheel D W, German M S. Gene expression cascades in pancreatic development.  Mech Dev. 2003;  120 65-80
  • 30 Lammert E, Brown J, Melton D A. Notch gene expression during pancreatic organogenesis.  Mech Dev. 2000;  94 199-203
  • 31 Leonard J, Peers B, Johnson T, Ferreri K, Lee S, Montminy M R. Characterization of somatostatin transactivating factor-1, a novel homeobox factor that stimulates somatostatin expression in pancreatic islet cells.  Mol Endocrinol. 1993;  7 1275-1283
  • 32 Marshak S, Totary H, Cerasi E, Melloul D. Purification of the beta-cell glucose-sensitive factor that transactivates the insulin gene differentially in normal and transformed islet cells.  Proc Natl Acad Sci USA. 1996;  93 15057-15062
  • 33 Miller C P, McGehee R, Habener J F. IDX-1: a new homeodomain transcription factor expressed in rat pancreatic islets and duodenum that transactivates the somatostatin gene.  EMBO J. 1994;  13 1145-1156
  • 34 Ohlsson H, Karlsson K, Edlund T. IPF1, a homeodomain-containing transactivator of the insulin gene.  EMBO J. 1993;  12 4251-4259
  • 35 Wright C, Schnegelsberg P, De Robertis E. X1hbox 8: a novel Xenopus homeo protein restricted to a narrow band of endoderm.  Development. 1989;  105 787-794
  • 36 Edlund H. Transcribing Pancreas.  Diabetes. 1998;  47 1817-1823
  • 37 Offield M F, Jetton T L, Labosky P A, Ray M, Stein R W, Magnuson M A, Hogan B LM, Wright C VE. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum.  Development. 1996;  122 983-995
  • 38 Jonsson J, Carlsson L, Edlund T, Edlund H. Insulin-promoter-factor 1 is required for pancreas development in mice.  Nature. 1994;  371 606-609
  • 39 Stoffers D A, Zinkin N T, Stanojevic V, Clarke W L, Habener J F. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 coding region.  Nature Genetics. 1997;  15 106-110
  • 40 Macfarlane W M, Frayling T M, Ellard S, Evans J C, Allen L I, Bulman M P, Ayres S, Shepherd M, Clark P, Millward A, Demaine A, Wilkin T, Docherty K, Hattersley A T. Missense mutations in the insulin promoter factor-1 gene predispose to type 2 diabetes.  J Clin Invest. 1999;  104 R33-R39
  • 41 Hani E H, Stoffers D A, Chevre J C, Durand E, Stanojevic V, Dina C, Habener J F, Froguel P. Defective mutations in the insulin promoter factor-1 (IPF-1) gene in late-onset type 2 diabetes mellitus.  J Clin Invest. 1999;  104 R41-R48
  • 42 Stoffers D A, Ferrer J, Clarke W L, Habener J F. Early-onset type-II diabetes mellitus (MODY4) linked to IPF-1.  Nature Genetics. 1997;  17 138-139
  • 43 Johnson J D, Ahmed N T, Luciani D S, Han Z, Tran H, Fujita J, Misler S, Edlund H, Polonsky K S. Increased islet apoptosis in Pdx1+/-mice.  J Clin Invest. 2003;  111 1147-1160
  • 44 Dutta S, Bonner-Weir S, Montminy M, Wright C V. Regulatory factor linked to late-onset diabetes?.  Nature. 1998;  392 560
  • 45 Brissova M, Shiota M, Nicholson W E, Gannon M, Knobel M S, Piston D W, Wright C V, Powers A C. Reduction in pancreatic transcription factor PDX-1 impairs glucose-stimulated insulin secretion.  J Biol Chem. 2002;  277 11225-11232
  • 46 Thomas M, Devon O, Lee J, Peter A, Schlosser D, Tenser M, Habener J. Development of diabetes mellitus in aging transgenic mice following suppression of pancreatic homeoprotein IDX-1.  J Clin Invest. 2001;  108 319-329
  • 47 Holland A, Hale M, Kagami H, Hammer R, MacDonald R. Experimental control of pancreatic development and maintenance.  Proc Natl Acad Sci USA. 2002;  99 12236-12241
  • 48 Peers B, Sharma S, Johnson T, Kamps M, Montminy M. The pancreatic islet factor STF-1 binds cooperatively with Pbx to regulatory element in the somatostatin promoter: importance of the FPWMK motif and of the homeodomain.  Mol Cell Biol. 1995;  15 7091-7097
  • 49 Dutta S, Gannon M, Peers B, Wright C V, Bonner-Weir S, Montminy M. PDX: PBX complexes are required for normal proliferation of pancreatic cells during development.  Proc Natl Acad Sci USA. 2001;  98 1065-1070
  • 50 Kim S K, Selleri L, Lee J S, Zhang A Y, Gu X, Jacobs Y, Cleary M L. Pbx1 inactivation disrupts pancreas development and in Ipf1-deficient mice promotes diabetes mellitus.  Nat Genet. 2002;  30 430-435
  • 51 Gerrish K, Gannon M, Shih D, Henderson E, Stoffel M, Wright C V, Stein R. Pancreatic beta cell-specific transcription of the pdx-1 gene. The role of conserved upstream control regions and their hepatic nuclear factor 3beta sites.  J Biol Chem. 2000;  275 3485-3492
  • 52 Marshak S, Benshushan E, Shoshkes M, Havin L, Cerasi E, Melloul D. Functional conservation of regulatory elements in the pdx-1 gene: PDX-1 and hepatocyte nuclear factor 3beta transcription factors mediate beta-cell-specific expression.  Mol Cell Biol. 2000;  20 7583-7590
  • 53 Sharma S, Leonard J, Lee S, Chapman H D, Leiter E H, Montminy M R. Pancreatic islet expression of the homeobox factor STF-1 relies on an E-box motif that binds USF.  J Biol Chem. 1996;  271 2294-2299
  • 54 Sharma S, Jhala U, Johnson T, Ferreri K, Leonard J, Montminy M. Hormonal regulation of an islet-specific enhancer in the pancreatic homeobox gene STF-1.  Mol Cell Bio. 1997;  17 2598-2604
  • 55 Jacquemin P, Lemaigre F P, Rousseau G G. The Onecut transcription factor HNF-6 (OC-1) is required for timely specification of the pancreas and acts upstream of Pdx-1 in the specification cascade.  Dev Biol. 2003;  258 105-116
  • 56 Hussain M A, Habener J F. Glucagon-like peptide 1 increases glucose-dependent activity of the homeoprotein IDX-1 transactivating domain in pancreatic beta-cells.  Biochem Biophys Res Commun. 2000;  274 616-619
  • 57 Wang X, Zhou J, Doyle M E, Egan J M. Glucagon-like peptide-1 causes pancreatic duodenal homeobox-1 protein translocation from the cytoplasm to the nucleus of pancreatic beta-cells by a cyclic adenosine monophosphate/protein kinase A-dependent mechanism.  Endocrinology. 2001;  142 1820-1827
  • 58 Krapp A, Knofler M, Ledermann B, Burki K, Berney C, Zoerkler N, Hagenbuchle O, Wellauer P K. The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas.  Genes Dev. 1998;  12 3752-3763
  • 59 Krapp A, Knofler M, Frutiger S, Hughes G J, Hagenbuchle O, Wellauer P K. The p48 DNA-binding subunit of transcription factor PTF1 is a new exocrine pancreas-specific basic helix-loop-helix protein.  EMBO J. 1996;  15 4317-4329
  • 60 Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald R J, Wright C V. The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors.  Nat Genet. 2002;  32 128-134
  • 61 Gradwohl G, Dierich A, LeMeur M, Guillemot F. Neurogenin 3 is required for the development of the four endocrine cell lineages of the pancreas.  Proc Natl Acad Sci USA. 2000;  97 1607-1611
  • 62 Huang H P, Liu M, El-Hodiri H M, Chu K, Jamrich M, Tsai M J. Regulation of the pancreatic islet-specific gene BETA2 (neuroD) by neurogenin 3.  Mol Cell Biol. 2000;  20 3292-3307
  • 63 Apelqvist A, Li H, Sommer L, Beatus P, Anderson D J, Honjo T, Hrabe d e, Lendahl U, Edlund H. Notch signalling controls pancreatic cell differentiation.  Nature. 1999;  400 877-881
  • 64 Jensen J, Pedersen E E, Galante P, Hald J, Heller R S, Ishibashi M, Kageyama R, Guillemot F, Serup P, Madsen O D. Control of endodermal endocrine development by Hes-1.  Nat Genet. 2000;  24 36-44
  • 65 Schwitzgebel V M, Scheel D W, Conners J R, Kalamaras J, Lee J E, Anderson D J, Sussel L, Johnson J D, German M S. Expression of neurogenin3 reveals an islet cell precursor population in the pancreas.  Development. 2000;  127 3533-3542
  • 66 Harrison K A, Thaler J, Pfaff S L, Gu H, Kehrl J H. Pancreas dorsal lobe agenesis and abnormal islets of Langerhans in Hlxb9-deficient mice.  Nat Genet. 1999;  23 71-75
  • 67 Li H, Arber S, Jessell T M, Edlund H. Selective agenesis of the dorsal pancreas in mice lacking homeobox gene Hlxb9.  Nat Genet. 1999;  23 67-70
  • 68 Ahlgren U, Pfaff S L, Jessell T M, Edlund T, Edlund H. Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells.  Nature. 1997;  385 257-260
  • 69 Sander M, Sussel L, Conners J R, Scheel D W, Kalamaras J, Dela Cruz F, Schwitzgebel V M, Hayes-Jordan A, German M. Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of beta-cell formation in the pancreas.  Development. 2000;  127 5533-5540
  • 70 Sussel L, Kalamaras J, Hartigan-O’Connor D J, Meneses J J, Pedersen R A, Rubenstein J L, German M S. Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells.  Development. 1998;  125 2213-2221
  • 71 Sosa-Pineda B, Chowdhury K, Torres M, Gruss P. The Pax4 gene is essential for differentiation of insulin-producing β cells in the mammalian pancreas.  Nature. 1997;  386 399-402
  • 72 St. Onge L, Sosa-Pineda B, Chowdhury K, Gruss P. Pax6 is required for differentiation of glucagon-producing α-cells in mouse pancreas.  Nature. 1997;  387 406-409
  • 73 Kataoka K, Han S I, Shioda S, Hirai M, Nishizawa M, Handa H. MafA is a glucose-regulated and pancreatic beta-cell-specific transcriptional activator for the insulin gene.  J Biol Chem. 2002;  277 49903-49910
  • 74 Olbrot M, Rud J, Moss L G, Sharma A. Identification of beta-cell-specific insulin gene transcription factor RIPE3b1 as mammalian MafA.  Proc Natl Acad Sci USA. 2002;  99 6737-6742
  • 75 Matsuoka T A, Zhao L, Artner I, Jarrett H W, Friedman D, Means A, Stein R. Members of the large Maf transcription family regulate insulin gene transcription in islet beta cells.  Mol Cell Biol. 2003;  23 6049-6062
  • 76 Matsuoka T A, Artner I, Henderson E, Means A, Sander M, Stein R. The MafA transcription factor appears to be responsible for tissue-specific expression of insulin.  Proc Natl Acad Sci USA. 2004;  101 2930-2933
  • 77 Deutsch G, Jung J, Zheng M, Lora J, Zaret K S. A bipotential precursor population for pancreas and liver within the embryonic endoderm.  Development. 2001;  6 871-881
  • 78 Bort R, Martinez-Barbera J P, Beddington R S, Zaret K S. Hex homeobox gene-dependent tissue positioning is required for organogenesis of the ventral pancreas.  Development. 2004;  131 797-806
  • 79 Lammert E, Cleaver O, Melton D. Induction of pancreatic differentiation by signals from blood vessels.  Science. 2001;  294 564-567
  • 80 Yoshitomi H, Zaret K S. Endothelial cell interactions initiate dorsal pancreas development by selectively inducing the transcription factor Ptf1a.  Development. 2004;  131 807-817
  • 81 Herrera P L. Adult insulin-and glucagon-producing cells differentiate from two independent cell lineages.  Development. 2000;  127 2317-2322
  • 82 Bonner-Weir S. Perspective: Postnatal pancreatic beta cell growth.  Endocrinology. 2000;  141 1926-1929
  • 83 Bonner-Weir S, Trent D F, Honey R N, Weir G C. Responses of neonatal rat islets to streptozotocin: limited B-cell regeneration and hyperglycemia.  Diabetes. 1981;  30 64-69
  • 84 Porter S E, Sorenson R L, Dann P, Garcia-Ocana A, Stewart A F, Vasavada R C. Progressive pancreatic islet hyperplasia in the islet-targeted, parathyroid hormone-related protein-overexpressing mouse.  Endocrinology. 1998;  139 3743-3751
  • 85 Pictet R, Rutter W J. Development of the embryonic endocrine pancreas. Handbook of Physiology Vol. 1. D. F. Steiner and N. Freinkel (eds.) Washington DC; American Physiology Society 1972: 25-66
  • 86 Bonner-Weir S, Taneja M, Weir G C, Tatarkiewicz K, Song K H, Sharma A, O’Neil J J. In vitro cultivation of human islets from expanded ductal tissue.  Proc Natl Acad Sci USA. 2000;  97 7999-8004
  • 87 Zulewski H, Abraham E J, Gerlach M J, Daniel P B, Moritz W, Muller B, Vallejo M, Thomas M K, Habener J F. Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes.  Diabetes. 3002;  50 521-533
  • 88 Humphrey R K, Bucay N, Beattie G M, Lopez A D, Messam C A, Cirulli V, Hayek A. Characterization and isolation of promoter-defined nestin-positive cells from the human fetal pancreas.  Diabetes. 2003;  52 2519-2525
  • 89 Treutelaar M K, Skidmore J M, Dias-Leme C L, Hara M, Zhang L, Simeone D, Martin D M, Burant C F. Nestin-lineage cells contribute to the microvasculature but not endocrine cells of the islet.  Diabetes. 2003;  52 2503-2512
  • 90 Lardon J, Rooman I, Bouwens L. Nestin expression in pancreatic stellate cells and angiogenic endothelial cells.  Histochem Cell Biol. 2002;  117 535-540
  • 91 Klein T, Ling Z, Heimberg H, Madsen O D, Heller R S, Serup P. Nestin is expressed in vascular endothelial cells in the adult human pancreas.  J Histochem Cytochem. 2003;  51 697-706
  • 92 Street C N, Lakey J R, Seeberger K, Helms L, Rajotte R V, Shapiro A M, Korbutt G S. Heterogeneous expression of nestin in human pancreatic tissue precludes its use as an islet precursor marker.  J Endocrinol. 2004;  180 213-225
  • 93 Bertelli E, Bendayan M. Intermediate endocrine-acinar pancreatic cells in duct ligation conditions.  Am J Physiol. 1997;  273 C1641-C1649
  • 94 Bouwens L. Transdifferentiation versus stem cell hypothesis for the regeneration of islet beta-cells in the pancreas.  Microsc Res Tech. 1998;  43 332-336
  • 95 Lipsett M, Finegood D T. Beta-cell neogenesis during prolonged hyperglycemia in rats.  Diabetes. 2002;  51 1834-1841
  • 96 Rooman I, Heremans Y, Heimberg H, Bouwens L. Modulation of rat pancreatic acinoductal transdifferentiation and expression of PDX-1 in vitro.  Diabetologia. 2000;  43 907-914
  • 97 Hardikar A A, Marcus-Samuels B, Geras-Raaka E, Raaka B M, Gershengorn M C. Human pancreatic precursor cells secrete FGF2 to stimulate clustering into hormone-expressing islet-like cell aggregates.  Proc Natl Acad Sci USA. 2003;  100 7117-7122
  • 98 Mashima H, Shibata H, Mine T, Kojima I. Formation of insulin-producing cells from pancreatic acinar AR42J cells by hepatocyte growth factor.  Endocrinology. 1996;  137 3969-3976
  • 99 Mashima H, Ohnishi H, Wakabayashi K, Mine T, Miyagawa J, Hanafusa T, Seno M, Yamada H, Kojima I. Betacellulin and activin A coordinately convert amylase-secreting pancreatic AR42J cells into insulin-secreting cells.  J Clin Invest. 1996;  97 1647-1654
  • 100 Zhou J, Wang X, Pineyro M A, Egan J M. Glucagon-like peptide 1 and exendin-4 convert pancreatic AR42J cells into glucagon-and insulin-producing cells.  Diabetes. 1999;  48 2358-2366
  • 101 Palgi J, Stumpf E, Otonkoski T. Transcription factor expression and hormone production in pancreatic AR42J cells.  Mol Cell Endocrinol. 2000;  165 41-49
  • 102 Mathews V, Hanson P T, Ford E, Fujita J, Polonsky K S, Graubert T A. Recruitment of bone marrow-derived endothelial cells to sites of pancreatic beta-cell injury.  Diabetes. 2004;  53 91-98
  • 103 Ianus A, Holz G G, Theise N D, Hussain M A. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion.  J Clin Invest. 2003;  111 843-850
  • 104 Choi J B, Uchino H, Azuma K, Iwashita N, Tanaka Y, Mochizuki H, Migita M, Shimada T, Kawamori R, Watada H. Little evidence of transdifferentiation of bone marrow-derived cells into pancreatic beta cells.  Diabetologia. 2003;  46 1366-1374
  • 105 Lechner A, Yang Y G, Blacken R A, Wang L, Nolan A L, Habener J F. No evidence for significant transdifferentiation of bone marrow into pancreatic beta-cells in vivo.  Diabetes. 2004;  53 616-623
  • 106 Hess D, Li L, Martin M, Sakano S, Hill D J, Strutt B, Thyssen S, Gray D A, Bhatia M. Bone marrow-derived stem cells initiate pancreatic regeneration.  Nat Biotechnol. 2003;  21 763-770
  • 107 Wagers A J, Weissman I L. Plasticity of adult stem cells.  Cell. 2004;  116 639-648
  • 108 Dor Y, Brown J, Martinez O I, Melton D A. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation.  Nature. 2004;  429 41-46
  • 109 Zaret K. Regenerative medicine: Self-help for insulin cells.  Nature. 2004;  429 30-31
  • 110 Brubaker P L, Drucker D J. Minireview: Glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system.  Endocrinology. 2004;  145 2653-2659
  • 111 Scrocchi L A, Brown T J, MacLusky N, Brubaker P L, Auerbach A B, Joyner A L, Drucker D J. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene.  Nature Med. 1996;  2 1254-1258
  • 112 Ling Z, Wu D, Zambre Y, Flamez D, Drucker D J, Pipeleers D, Schuit F. Glucagon-like peptide 1 receptor signaling influences topography of islet cells in mice.  Virchows Arch. 2001;  438 382-387
  • 113 Pederson R A, Satkunarajah M, McIntosh C H, Scrocchi L A, Flamez D, Schuit F, Drucker DJ, Wheeler M B. Enhanced glucose-dependent insulinotropic polypeptide secretion and insulinotropic action in glucagon-like peptide 1 receptor-/-mice.  Diabetes. 1998;  47 1046-1052
  • 114 Wilson M E, Kalamaras J A, German M S. Expression pattern of IAPP and prohormone convertase 1/3 reveals a distinctive set of endocrine cells in the embryonic pancreas.  Mech Dev. 2002;  115 171-176
  • 115 Prasadan K, Daume E, Preuett B, Spilde T, Bhatia A, Kobayashi H, Hembree M, Manna P, Gittes G K. Glucagon is required for early insulin-positive differentiation in the developing mouse pancreas.  Diabetes. 2002;  51 3229-3236
  • 116 Hardikar A A, Wang X Y, Williams L J, Kwok J, Wong R, Yao M, Tuch B E. Functional maturation of fetal porcine beta-cells by glucagon-like peptide 1 and cholecystokinin.  Endocrinology. 2002;  143 3505-3514
  • 117 Kreymann B, Ghatei M A, Domin J, Kanse S, Bloom S R. Developmental patterns of glucagon-like peptide-1-(7-36) amide and peptide-YY in rat pancreas and gut.  Endocrinology. 1991;  129 1001-1005
  • 118 Srinivasan M, Laychock S G, Hill D J, Patel M S. Neonatal nutrition: metabolic programming of pancreatic islets and obesity.  Exp Biol Med. 2003;  228 15-23
  • 119 Xu G, Stoffers D A, Habener J F, Bonner-Weir S. Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats.  Diabetes. 1999;  48 2270-2276
  • 120 De Leon D D, Deng S, Madani R, Ahima R S, Drucker D J, Stoffers D A. Role of endogenous glucagon-like peptide-1 in islet regeneration after partial pancreatectomy.  Diabetes. 2003;  52 365-371
  • 121 Nie Y, Nakashima M, Brubaker P L, Li Q L, Perfetti R, Jansen E, Zambre Y, Pipeleers D, Friedman T C. Regulation of pancreatic PC1 and PC2 associated with increased glucagon-like peptide 1 in diabetic rats.  J Clin Invest. 2000;  105 955-965
  • 122 Movassat J, Saulnier C, Serradas P, Portha B. Impaired development of pancreatic beta-cell mass is a primary event during the progression to diabetes in the GK rat.  Diabetologia. 1997;  40 916-925
  • 123 Tourrel C, Bailbe D, Lacorne M, Meile M J, Kergoat M, Portha B. Persistent improvement of type 2 diabetes in the Goto-Kakizaki rat model by expansion of the beta-cell mass during the prediabetic period with glucagon-like peptide-1 or exendin-4.  Diabetes. 2002;  51 1443-1452
  • 124 Tourrel C, Bailbe D, Meile M J, Kergoat M, Portha B. Glucagon-like peptide-1 and exendin-4 stimulate beta-cell neogenesis in streptozotocin-treated newborn rats resulting in persistently improved glucose homeostasis at adult age.  Diabetes. 2001;  50 1562-1570
  • 125 Simmons R A, Templeton L, Gertz S, Niu H. Intrauterine growth retardation leads to type II diabetes in adulthood in the rat.  Diabetes. 2002;  50 2279-2286
  • 126 Vuguin P, Raab B, Yang X, Biu L, Barzilai N, Stoffers D A, Simmons R A. Exendin-4 decreases body weight and improves insulin action in intrauterine growth retarded rats.  Society for Pediatric Research. 2003;  Abstract 804

D. A. Stoffers, M.D., Ph.D.

Clinical Research Building 611 B, Department of Medicine, University of Pennsylvania School of Medicine

415 Curie Boulevard · Philadelphia, Pennsylvania 19104-4399 · USA ·

Phone: +1 (215) 573-5413

Fax: +1 (215) 898-5408

Email: stoffers@mail.med.upenn.edu

    >