Semin Reprod Med 2006; 24(4): 251-261
DOI: 10.1055/s-2006-948554
Copyright © 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Integrins in the Ovary

Danielle Monniaux1 , Clotilde Huet-Calderwood1 , Frédérique Le Bellego3 , Stéphane Fabre1 , Philippe Monget1 , David A. Calderwood2
  • 1Physiologie de la Reproduction et des Comportements, INRA-CNRS-Université de Tours-Haras Nationaux, INRA Nouzilly, France
  • 2Department of Pharmacology and Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, New Haven, Connecticut
  • 3Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
Further Information

Publication History

Publication Date:
30 August 2006 (online)

ABSTRACT

Integrins are the major receptors mediating adhesion to the extracellular matrix. Following ligand binding, conformational changes of integrins induce the recruitment of multiple signaling and scaffolding proteins that connect integrin tails to the actin cytoskeleton and permit activation of signaling pathways regulating cell proliferation, apoptosis, differentiation, and migration. In the ovary, extracellular matrix components present in the follicular basement membrane, around follicular cells, and in the follicular fluid participate in the regulation of follicular development, and a role of integrins in this process is strongly suggested. We discuss available data on integrin expression in ovary, integrin function in granulosa cells, and the possible involvement of integrins in follicular growth, atresia, and luteinization. We also discuss the potential role of oocyte integrins as receptors for sperm ADAMs (a disintegrin and metalloproteinase) in fertilization and the cooperation of integrins with proteinases in regulating proliferation, adhesion, migration, and invasion of ovarian surface epithelium cells in ovarian tumor development.

REFERENCES

  • 1 Hynes R O. Integrins: bidirectional, allosteric signaling machines.  Cell. 2002;  110 673-687
  • 2 Plow E F, Haas T A, Zhang L, Loftus J, Smith J W. Ligand binding to integrins.  J Biol Chem. 2000;  275 21785-21788
  • 3 van der Flier A, Sonnenberg A. Function and interactions of integrins.  Cell Tissue Res. 2001;  305 285-298
  • 4 Shattil S J, Leavitt A D. All in the family: primary megakaryocytes for studies of platelet alphaIIbbeta3 signaling.  Thromb Haemost. 2001;  86 259-265
  • 5 Belkin A M, Zhidkova N I, Balzac F et al.. Beta 1D integrin displaces the beta 1A isoform in striated muscles: localization at junctional structures and signaling potential in nonmuscle cells.  J Cell Biol. 1996;  132 211-226
  • 6 Adams J C, Watt F M. Changes in keratinocyte adhesion during terminal differentiation: reduction in fibronectin binding precedes alpha 5 beta 1 integrin loss from the cell surface.  Cell. 1990;  63 425-435
  • 7 Brooks P C, Clark R A, Cheresh D A. Requirement of vascular integrin alpha v beta 3 for angiogenesis.  Science. 1994;  264 569-571
  • 8 Ginsberg M H, Du X, Plow E F. Inside-out integrin signalling.  Curr Opin Cell Biol. 1992;  4 766-771
  • 9 Shimaoka M, Springer T A. Therapeutic antagonists and conformational regulation of integrin function.  Nat Rev Drug Discov. 2003;  2 703-716
  • 10 Calderwood D A. Integrin activation.  J Cell Sci. 2004;  117 657-666
  • 11 Laudanna C, Kim J Y, Constantin G, Butcher E. Rapid leukocyte integrin activation by chemokines.  Immunol Rev. 2002;  186 37-46
  • 12 van Kooyk Y, Figdor C G. Avidity regulation of integrins: the driving force in leukocyte adhesion.  Curr Opin Cell Biol. 2000;  12 542-547
  • 13 Hogg N, Henderson R, Leitinger B, McDowall A, Porter J, Stanley P. Mechanisms contributing to the activity of integrins on leukocytes.  Immunol Rev. 2002;  186 164-171
  • 14 Isenberg W M, McEver R P, Phillips D R, Shuman M A, Bainton D F. The platelet fibrinogen receptor: an immunogold-surface replica study of agonist-induced ligand binding and receptor clustering.  J Cell Biol. 1987;  104 1655-1663
  • 15 Erb E M, Tangemann K, Bohrmann B, Muller B, Engel J. Integrin alphaIIb beta3 reconstituted into lipid bilayers is nonclustered in its activated state but clusters after fibrinogen binding.  Biochemistry. 1997;  36 7395-7402
  • 16 Li R, Mitra N, Gratkowski H et al.. Activation of integrin alphaIIbbeta3 by modulation of transmembrane helix associations.  Science. 2003;  300 795-798
  • 17 Xiong J P, Stehle T, Diefenbach B et al.. Crystal structure of the extracellular segment of integrin alpha Vbeta3.  Science. 2001;  294 339-345
  • 18 Xiong J P, Stehle T, Zhang R et al.. Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand.  Science. 2002;  296 151-155
  • 19 Xiao T, Takagi J, Coller B S, Wang J H, Springer T A. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics.  Nature. 2004;  432 59-67
  • 20 Emsley J, Knight C G, Farndale R W, Barnes M J, Liddington R C. Structural basis of collagen recognition by integrin alpha2beta1.  Cell. 2000;  101 47-56
  • 21 Shimaoka M, Xiao T, Liu J H et al.. Structures of the alpha L I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation.  Cell. 2003;  112 99-111
  • 22 Liddington R C, Ginsberg M H. Integrin activation takes shape.  J Cell Biol. 2002;  158 833-839
  • 23 Xiong J P, Stehle T, Goodman S L, Arnaout M A. New insights into the structural basis of integrin activation.  Blood. 2003;  102 1155-1159
  • 24 Humphries M J, McEwan P A, Barton S J, Buckley P A, Bella J, Mould A P. Integrin structure: heady advances in ligand binding, but activation still makes the knees wobble.  Trends Biochem Sci. 2003;  28 313-320
  • 25 Beglova N, Blacklow S C, Takagi J, Springer T A. Cysteine-rich module structure reveals a fulcrum for integrin rearrangement upon activation.  Nat Struct Biol. 2002;  9 282-287
  • 26 Takagi J, Petre B M, Walz T, Springer T A. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling.  Cell. 2002;  110 599-611
  • 27 Takagi J, Strokovich K, Springer T A, Walz T. Structure of integrin alpha5beta1 in complex with fibronectin.  EMBO J. 2003;  22 4607-4615
  • 28 Luo B H, Springer T A, Takagi J. Stabilizing the open conformation of the integrin headpiece with a glycan wedge increases affinity for ligand.  Proc Natl Acad Sci USA. 2003;  100 2403-2408
  • 29 Luo B H, Strokovich K, Walz T, Springer T A, Takagi J. Allosteric beta1 integrin antibodies that stabilize the low affinity state by preventing the swing-out of the hybrid domain.  J Biol Chem. 2004;  279 27466-27471
  • 30 Calzada M J, Alvarez M V, Gonzalez-Rodriguez J. Agonist-specific structural rearrangements of integrin alpha IIbbeta 3. Confirmation of the bent conformation in platelets at rest and after activation.  J Biol Chem. 2002;  277 39899-39908
  • 31 Adair B D, Xiong J P, Maddock C, Goodman S L, Arnaout M A, Yeager M. Three-dimensional EM structure of the ectodomain of integrin {alpha}V{beta}3 in a complex with fibronectin.  J Cell Biol. 2005;  168 1109-1118
  • 32 Adair B D, Yeager M. Three-dimensional model of the human platelet integrin alpha IIbbeta 3 based on electron cryomicroscopy and x-ray crystallography.  Proc Natl Acad Sci USA. 2002;  99 14059-14064
  • 33 Critchley D R. Focal adhesions-the cytoskeletal connection.  Curr Opin Cell Biol. 2000;  12 133-139
  • 34 Calderwood D A, Shattil S J, Ginsberg M H. Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling.  J Biol Chem. 2000;  275 22607-22610
  • 35 Liu S, Calderwood D A, Ginsberg M H. Integrin cytoplasmic domain-binding proteins.  J Cell Sci. 2000;  113(pt 20) 3563-3571
  • 36 Brakebusch C, Fassler R. The integrin-actin connection, an eternal love affair.  EMBO J. 2003;  22 2324-2333
  • 37 Geiger B, Bershadsky A, Pankov R, Yamada K M. Transmembrane crosstalk between the extracellular matrix-cytoskeleton crosstalk.  Nat Rev Mol Cell Biol. 2001;  2 793-805
  • 38 Tadokoro S, Shattil S J, Eto K et al.. Talin binding to integrin beta tails: a final common step in integrin activation.  Science. 2003;  302 103-106
  • 39 Giancotti F G, Ruoslahti E. Integrin signaling.  Science. 1999;  285 1028-1032
  • 40 Stupack D G, Cheresh D A. Get a ligand, get a life: integrins, signaling and cell survival.  J Cell Sci. 2002;  115 3729-3738
  • 41 Schwartz M A, Ginsberg M H. Networks and crosstalk: integrin signalling spreads.  Nat Cell Biol. 2002;  4 E65-E68
  • 42 DeMali K A, Burridge K. Coupling membrane protrusion and cell adhesion.  J Cell Sci. 2003;  116 2389-2397
  • 43 Rodgers R J, van Wezel I L, Irving-Rodgers H F, Lavranos T C, Irvine C M, Krupa M. Roles of extracellular matrix in follicular development.  J Reprod Fertil Suppl. 1999;  54 343-352
  • 44 Irving-Rodgers H F, Harland M L, Rodgers R J. A novel basal lamina matrix of the stratified epithelium of the ovarian follicle.  Matrix Biol. 2004;  23 207-217
  • 45 Anderson R, Fassler R, Georges-Labouesse E et al.. Mouse primordial germ cells lacking beta1 integrins enter the germline but fail to migrate normally to the gonads.  Development. 1999;  126 1655-1664
  • 46 Zuccotti M, Giorgi Rossi P, Fiorillo E, Garagna S, Forabosco A, Redi C A. Timing of gene expression and oolemma localization of mouse alpha6 and beta1 integrin subunits during oogenesis.  Dev Biol. 1998;  200 27-34
  • 47 Giebel J, de Souza P, Rune G M. Expression of integrins in marmoset (Callithrix jacchus) ovary during folliculogenesis.  Tissue Cell. 1996;  28 379-385
  • 48 Arraztoa J A, Zhou J, Marcu D et al.. Identification of genes expressed in primate primordial oocytes.  Hum Reprod. 2005;  20 476-483
  • 49 Burns K H, Owens G E, Fernandez J M, Nilson J H, Matzuk M M. Characterization of integrin expression in the mouse ovary.  Biol Reprod. 2002;  67 743-751
  • 50 Clavero A, Castilla J A, Martinez L, Mendoza N, Fontes J, Maldonado V. Expression of integrin fraction and adhesion molecules on human granulosa cells and its relation with oocyte maturity and follicular steroidogenesis.  J Assist Reprod Genet. 2004;  21 187-195
  • 51 Le Bellego F, Pisselet C, Huet C, Monget P, Monniaux D. Laminin-alpha6beta1 integrin interaction enhances survival and proliferation and modulates steroidogenesis of ovine granulosa cells.  J Endocrinol. 2002;  172 45-59
  • 52 Honda T, Fujiwara H, Ueda M, Maeda M, Mori T. Integrin alpha 6 is a differentiation antigen of human granulosa cells.  J Clin Endocrinol Metab. 1995;  80 2899-2905
  • 53 Fujiwara H, Ueda M, Takakura K, Mori T, Maeda M. A porcine homolog of human integrin alpha 6 is a differentiation antigen of granulosa cells.  Biol Reprod. 1995;  53 407-417
  • 54 Nakamura K, Fujiwara H, Higuchi T et al.. Integrin alpha6 is involved in follicular growth in mice.  Biochem Biophys Res Commun. 1997;  235 524-528
  • 55 Giebel J, Rune G M. Relationship between expression of integrins and granulosa cell apoptosis in ovarian follicles of the marmoset (Callithrix jacchus).  Tissue Cell. 1997;  29 525-531
  • 56 Taddei I, Faraldo M M, Teuliere J, Deugnier M A, Thiery J P, Glukhova M A. Integrins in mammary gland development and differentiation of mammary epithelium.  J Mammary Gland Biol Neoplasia. 2003;  8 383-394
  • 57 Frojdman K, Pelliniemi L J. Alpha 6 subunit of integrins in the development and sex differentiation of the mouse ovary.  Dev Dyn. 1995;  202 397-404
  • 58 Yang J T, Rayburn H, Hynes R O. Embryonic mesodermal defects in alpha 5 integrin-deficient mice.  Development. 1993;  119 1093-1105
  • 59 Kim S, Harris M, Varner J A. Regulation of integrin alpha vbeta 3-mediated endothelial cell migration and angiogenesis by integrin alpha5beta1 and protein kinase A.  J Biol Chem. 2000;  275 33920-33928
  • 60 Boudreau N J, Varner J A. The homeobox transcription factor Hox D3 promotes integrin alpha5beta1 expression and function during angiogenesis.  J Biol Chem. 2004;  279 4862-4868
  • 61 Gospodarowicz D, Delgado D, Vlodavsky I. Permissive effect of the extracellular matrix on cell proliferation in vitro.  Proc Natl Acad Sci USA. 1980;  77 4094-4098
  • 62 Aharoni D, Meiri I, Atzmon R, Vlodavsky I, Amsterdam A. Differential effect of components of the extracellular matrix on differentiation and apoptosis.  Curr Biol. 1997;  7 43-51
  • 63 Huet C, Pisselet C, Mandon-Pepin B, Monget P, Monniaux D. Extracellular matrix regulates ovine granulosa cell survival, proliferation and steroidogenesis: relationships between cell shape and function.  J Endocrinol. 2001;  169 347-360
  • 64 Le Bellego F, Fabre S, Pisselet C, Monniaux D. Cytoskeleton reorganization mediates alpha6beta1 integrin-associated actions of laminin on proliferation and survival, but not on steroidogenesis of ovine granulosa cells.  Reprod Biol Endocrinol. 2005;  3 19 http://Available at: www.nbej.com/content/3/1/29
  • 65 Chang S C, Anderson W, Lewis J C, Ryan R J, Kang Y K. The porcine ovarian follicle. II. Electron microscopic study of surface features of granulosa cells at different stages of development.  Biol Reprod. 1977;  16 349-357
  • 66 Cran D G, Musk L. The distribution of actin in sheep ovaries.  J Exp Zool. 1985;  235 375-380
  • 67 Lipner H, Cross N L. Morphology of the membrana granulosa of the ovarian follicle.  Endocrinology. 1968;  82 638-641
  • 68 Monniaux D, Mandon-Pepin B, Monget P. Follicular atresia, a programmed wastage.  Med Sci (Paris). 1999;  15 157-166
  • 69 Han B, Bai X H, Lodyga M et al.. Conversion of mechanical force into biochemical signaling.  J Biol Chem. 2004;  279 54793-54801
  • 70 Ingber D E, Tensegrity I I. How structural networks influence cellular information processing networks.  J Cell Sci. 2003;  116 1397-1408
  • 71 Mammoto A, Huang S, Moore K, Oh P, Ingber D E. Role of RhoA, mDia, and ROCK in cell shape-dependent control of the Skp2-p27kip1 pathway and the G1/S transition.  J Biol Chem. 2004;  279 26323-26330
  • 72 Ruoslahti E, Reed J C. Anchorage dependence, integrins, and apoptosis.  Cell. 1994;  77 477-478
  • 73 Bagavandoss P, Midgley Jr A R, Wicha M. Developmental changes in the ovarian follicular basal lamina detected by immunofluorescence and electron microscopy.  J Histochem Cytochem. 1983;  31 633-640
  • 74 Huet C, Monget P, Pisselet C, Monniaux D. Changes in extracellular matrix components and steroidogenic enzymes during growth and atresia of antral ovarian follicles in the sheep.  Biol Reprod. 1997;  56 1025-1034
  • 75 Besnard N, Pisselet C, Zapf J, Hornebeck W, Monniaux D, Monget P. Proteolytic activity is involved in changes in intrafollicular insulin-like growth factor-binding protein levels during growth and atresia of ovine ovarian follicles.  Endocrinology. 1996;  137 1599-1607
  • 76 Sato K, Katagiri K, Hattori S et al.. Laminin 5 promotes activation and apoptosis of the T cells expressing alpha3beta1 integrin.  Exp Cell Res. 1999;  247 451-460
  • 77 Seewaldt V L, Mrozek K, Sigle R et al.. Suppression of p53 function in normal human mammary epithelial cells increases sensitivity to extracellular matrix-induced apoptosis.  J Cell Biol. 2001;  155 471-486
  • 78 Bussenot I, Ferre G, Azoulay-Barjonet C, Murgo C, Vieitez G, Parinaud J. Culture of human preovulatory granulosa cells: effect of extracellular matrix on steroidogenesis.  Biol Cell. 1993;  77 181-186
  • 79 Carnegie J A, Byard R, Dardick I, Tsang B K. Culture of granulosa cells in collagen gels: the influence of cell shape on steroidogenesis.  Biol Reprod. 1988;  38 881-890
  • 80 Ben-Rafael Z, Benadiva C A, Mastroianni Jr L et al.. Collagen matrix influences the morphologic features and steroid secretion of human granulosa cells.  Am J Obstet Gynecol. 1988;  159 1570-1574
  • 81 Aten R F, Kolodecik T R, Behrman H R. A cell adhesion receptor antiserum abolishes, whereas laminin and fibronectin glycoprotein components of extracellular matrix promote, luteinization of cultured rat granulosa cells.  Endocrinology. 1995;  136 1753-1758
  • 82 Sites C K, Kessel B, LaBarbera A R. Adhesion proteins increase cellular attachment, follicle-stimulating hormone receptors, and progesterone production in cultured porcine granulosa cells.  Proc Soc Exp Biol Med. 1996;  212 78-83
  • 83 Fujiwara H, Honda T, Ueda M et al.. Laminin suppresses progesterone production by human luteinizing granulosa cells via interaction with integrin alpha 6 beta 1.  J Clin Endocrinol Metab. 1997;  82 2122-2128
  • 84 Kaji K, Kudo A. The mechanism of sperm-oocyte fusion in mammals.  Reproduction. 2004;  127 423-429
  • 85 Capmany G, Mart M, Santalo J, Bolton V N. Distribution of alpha3, alpha5 and alpha(v) integrin subunits in mature and immature human oocytes.  Mol Hum Reprod. 1998;  4 951-956
  • 86 Ziyyat A, Naud-Barriant N, Barraud-Lange V et al.. Cyclic FEE peptide increases human gamete fusion and potentiates its RGD-induced inhibition.  Hum Reprod. 2005;  20 3452-3458
  • 87 Fusi F M, Vignali M, Gailit J, Bronson R A. Mammalian oocytes exhibit specific recognition of the RGD (Arg-Gly-Asp) tripeptide and express oolemmal integrins.  Mol Reprod Dev. 1993;  36 212-219
  • 88 Chen H, Sampson N S. Mediation of sperm-egg fusion: evidence that mouse egg alpha6beta1 integrin is the receptor for sperm fertilin beta.  Chem Biol. 1999;  6 1-10
  • 89 Evans J P. Fertilin beta and other ADAMs as integrin ligands: insights into cell adhesion and fertilization.  Bioessays. 2001;  23 628-639
  • 90 Almeida E A, Huovila A P, Sutherland A E et al.. Mouse egg integrin alpha 6 beta 1 functions as a sperm receptor.  Cell. 1995;  81 1095-1104
  • 91 Eto K, Huet C, Tarui T et al.. Functional classification of ADAMs based on a conserved motif for binding to integrin alpha 9beta 1: implications for sperm-egg binding and other cell interactions.  J Biol Chem. 2002;  277 17804-17810
  • 92 Zhu X, Evans J P. Analysis of the roles of RGD-binding integrins, alpha(4)/alpha(9) integrins, alpha(6) integrins, and CD9 in the interaction of the fertilin beta (ADAM2) disintegrin domain with the mouse egg membrane.  Biol Reprod. 2002;  66 1193-1202
  • 93 He Z Y, Brakebusch C, Fassler R, Kreidberg J A, Primakoff P, Myles D G. None of the integrins known to be present on the mouse egg or to be ADAM receptors are essential for sperm-egg binding and fusion.  Dev Biol. 2003;  254 226-237
  • 94 Sengoku K, Takuma N, Miyamoto T, Horikawa M, Ishikawa M. Integrins are not involved in the process of human sperm-oolemmal fusion.  Hum Reprod. 2004;  19 639-644
  • 95 Reynolds L E, Wyder L, Lively J C et al.. Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins.  Nat Med. 2002;  8 27-34
  • 96 Carmeliet P. Integrin indecision.  Nat Med. 2002;  8 14-16
  • 97 Auersperg N, Edelson M I, Mok S C, Johnson S W, Hamilton T C. The biology of ovarian cancer.  Semin Oncol. 1998;  25 281-304
  • 98 Johnson J, Canning J, Kaneko T, Pru J K, Tilly J L. Germline stem cells and follicular renewal in the postnatal mammalian ovary.  Nature. 2004;  428 145-150
  • 99 Yang W L, Godwin A K, Xu X X. Tumor necrosis factor-alpha-induced matrix proteolytic enzyme production and basement membrane remodeling by human ovarian surface epithelial cells: molecular basis linking ovulation and cancer risk.  Cancer Res. 2004;  64 1534-1540
  • 100 Murdoch J, Van Kirk E A, Murdoch W J. Hormonal control of urokinase plasminogen activator secretion by sheep ovarian surface epithelial cells.  Biol Reprod. 1999;  61 1487-1491
  • 101 Goldman S, Shalev E. MMPS and TIMPS in ovarian physiology and pathophysiology.  Front Biosci. 2004;  9 2474-2483
  • 102 Skubitz A P, Bast Jr R C, Wayner E A, Letourneau P C, Wilke M S. Expression of alpha 6 and beta 4 integrins in serous ovarian carcinoma correlates with expression of the basement membrane protein laminin.  Am J Pathol. 1996;  148 1445-1461
  • 103 Carreiras F, Denoux Y, Staedel C, Lehmann M, Sichel F, Gauduchon P. Expression and localization of alpha v integrins and their ligand vitronectin in normal ovarian epithelium and in ovarian carcinoma.  Gynecol Oncol. 1996;  62 260-267
  • 104 Ahmed N, Pansino F, Baker M, Rice G, Quinn M. Association between alphavbeta6 integrin expression, elevated p42/44 kDa MAPK, and plasminogen-dependent matrix degradation in ovarian cancer.  J Cell Biochem. 2002;  84 675-686
  • 105 Maubant S, Cruet-Hennequart S, Dutoit S et al.. Expression of alpha V-associated integrin beta subunits in epithelial ovarian cancer and its relation to prognosis in patients treated with platinum-based regimens.  J Mol Histol. 2005;  36 119-129
  • 106 Chapman H A. Plasminogen activators, integrins, and the coordinated regulation of cell adhesion and migration.  Curr Opin Cell Biol. 1997;  9 714-724
  • 107 Chapman H A, Wei Y. Protease crosstalk with integrins: the urokinase receptor paradigm.  Thromb Haemost. 2001;  86 124-129
  • 108 Young T N, Rodriguez G C, Moser T L, Bast Jr R C, Pizzo S V, Stack M S. Coordinate expression of urinary-type plasminogen activator and its receptor accompanies malignant transformation of the ovarian surface epithelium.  Am J Obstet Gynecol. 1994;  170 1285-1296
  • 109 Kugler M C, Wei Y, Chapman H A. Urokinase receptor and integrin interactions.  Curr Pharm Des. 2003;  9 1565-1574
  • 110 Wei Y, Czekay R P, Robillard L et al.. Regulation of alpha5beta1 integrin conformation and function by urokinase receptor binding.  J Cell Biol. 2005;  168 501-511
  • 111 Beck V, Herold H, Benge A et al.. ADAM15 decreases integrin alphavbeta3/vitronectin-mediated ovarian cancer cell adhesion and motility in an RGD-dependent fashion.  Int J Biochem Cell Biol. 2005;  37 590-603
  • 112 Miller B J, Georges-Labouesse E, Primakoff P, Myles D G. Normal fertilization occurs with eggs lacking the integrin alpha6beta1 and is CD9-dependent.  J Cell Biol. 2000;  149 1289-1296
  • 113 Hynes R O. Targeted mutations in cell adhesion genes: what have we learned from them?.  Dev Biol. 1996;  180 402-412
  • 114 Judson P L, He X, Cance W G. Van Le L. Overexpression of focal adhesion kinase, a protein tyrosine kinase, in ovarian carcinoma.  Cancer. 1999;  86 1551-1556
  • 115 Sood A K, Coffin J E, Schneider G B et al.. Biological significance of focal adhesion kinase in ovarian cancer: role in migration and invasion.  Am J Pathol. 2004;  165 1087-1095
  • 116 Thant A A, Nawa A, Kikkawa F et al.. Fibronectin activates matrix metalloproteinase-9 secretion via the MEK1-MAPK and the PI3K-Akt pathways in ovarian cancer cells.  Clin Exp Metastasis. 2000;  18 423-428
  • 117 Ahmed N, Riley C, Oliva K, Stutt E, Rice G E, Quinn M A. Integrin-linked kinase expression increases with ovarian tumour grade and is sustained by peritoneal tumour fluid.  J Pathol. 2003;  201 229-237

Danielle MonniauxPh.D. 

Physiologie de la Reproduction et des Comportements

UMR 6175 INRA-CNRS-Université de Tours-Haras Nationaux, INRA 37380 Nouzilly, France

Email: monniaux@tours.inra.fr

    >