MEMBRANES AND BIOENERGETICS
Dimethylbiguanide Inhibits Cell Respiration via an Indirect Effect Targeted on the Respiratory Chain Complex I*

https://doi.org/10.1074/jbc.275.1.223Get rights and content
Under a Creative Commons license
open access

We report here a new mitochondrial regulation occurring only in intact cells. We have investigated the effects of dimethylbiguanide on isolated rat hepatocytes, permeabilized hepatocytes, and isolated liver mitochondria. Addition of dimethylbiguanide decreased oxygen consumption and mitochondrial membrane potential only in intact cells but not in permeabilized hepatocytes or isolated mitochondria. Permeabilized hepatocytes after dimethylbiguanide exposure and mitochondria isolated from dimethylbiguanide pretreated livers or animals were characterized by a significant inhibition of oxygen consumption with complex I substrates (glutamate and malate) but not with complex II (succinate) or complex IV (N,N,N′,N′-tetramethyl-1,4-phenylenediamine dihydrochloride (TMPD)/ascorbate) substrates. Studies using functionally isolated complex I obtained from mitochondria isolated from dimethylbiguanide-pretreated livers or rats further confirmed that dimethylbiguanide action was located on the respiratory chain complex I. The dimethylbiguanide effect was temperature-dependent, oxygen consumption decreasing by 50, 20, and 0% at 37, 25, and 15 °C, respectively. This effect was not affected by insulin-signaling pathway inhibitors, nitric oxide precursor or inhibitors, oxygen radical scavengers, ceramide synthesis inhibitors, or chelation of intra- or extracellular Ca2+. Because it is established that dimethylbiguanide is not metabolized, these results suggest the existence of a new cell-signaling pathway targeted to the respiratory chain complex I with a persistent effect after cessation of the signaling process.

Cited by (0)

*

This work was supported by the Grant EP000983-01 from the Fondation pour la Recherche Médicale, France (to M.-Y. El-Mir) and by the Ministère de l'Enseignement, de la Recherche et de la Technologie.The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

On leave from the Departamento de Fisiologia y Farmacologia, Facultad de Farmacia, Universidad de Salamanca-E-37007, Spain.