Journal of Biological Chemistry
Volume 275, Issue 4, 28 January 2000, Pages 2431-2438
Journal home page for Journal of Biological Chemistry

ENZYMOLOGY
Specificity Determinants of Substrate Recognition by the Protein Kinase DYRK1A*

https://doi.org/10.1074/jbc.275.4.2431Get rights and content
Under a Creative Commons license
open access

DYRK1A is a dual-specificity protein kinase that is thought to be involved in brain development. We identified a single phosphorylated amino acid residue in the DYRK substrate histone H3 (threonine 45) by mass spectrometry, phosphoamino acid analysis, and protein sequencing. Exchange of threonine 45 for alanine abolished phosphorylation of histone H3 by DYRK1A and by the related kinases DYRK1B, DYRK2, and DYRK3 but not by CLK3. In order to define the consensus sequence for the substrate specificity of DYRK1A, a library of 300 peptides was designed in variation of the H3 phosphorylation site. Evaluation of the phosphate incorporation into these peptides identified DYRK1A as a proline-directed kinase with a phosphorylation consensus sequence (RPX(S/T)P) similar to that of ERK2 (PX(S/T)P). A peptide designed after the optimal substrate sequence (DYRKtide) was efficiently phosphorylated by DYRK1A (K m = 35 μm) but not by ERK2. Both ERK2 and DYRK1A phosphorylated myelin basic protein, whereas only ERK2, but not DYRK1A, phosphorylated the mitogen-activated protein kinase substrate ELK-1. This marked difference in substrate specificity between DYRK1A and ERK2 can be explained by the requirement for an arginine at the P −3 site of DYRK substrates and its presumed interaction with aspartate 247 conserved in all DYRKs.

Cited by (0)

*

This work was supported by Deutsche Forschungsgemeinschaft Grant Be 1967/1-2.The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.