DNA: REPLICATION REPAIR AND RECOMBINATION
In Vitro Assembly and Recognition of Lys-63 Polyubiquitin Chains*

https://doi.org/10.1074/jbc.M103378200Get rights and content
Under a Creative Commons license
open access

Polyubiquitin chains assembled through lysine 48 (Lys-48) of ubiquitin act as a signal for substrate proteolysis by 26 S proteasomes, whereas chains assembled through Lys-63 play a mechanistically undefined role in post-replicative DNA repair. We showed previously that the products of the UBC13 andMMS2 genes function in error-free post-replicative DNA repair in the yeast Saccharomyces cerevisiae and form a complex that assembles Lys-63-linked polyubiquitin chains in vitro. Here we confirm that the Mms2·Ubc13 complex functions as a high affinity heterodimer in the chain assembly reaction in vitro and report the results of a kinetic characterization of the polyubiquitin chain assembly reaction. To test whether a Lys-63-linked polyubiquitin chain can signal degradation, we conjugated Lys-63-linked tetra-ubiquitin to a model substrate of 26 S proteasomes. Although the noncanonical chain effectively signaled substrate degradation, the results of new genetic epistasis studies agree with previous genetic data in suggesting that the proteolytic activity of proteasomes is not required for error-free post-replicative repair.

Cited by (0)

Published, JBC Papers in Press, May 21, 2001, DOI 10.1074/jbc.M103378200

*

This work was supported by National Institutes of Health (NIH) Grant GM60372 and by a training grant from the NIEHS, NIH.The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Present address: Laboratory of Synthetic Protein Chemistry, The Rockefeller University, New York, NY 10021.